a2 United States Patent

Hadley

US009418026B2

(10) Patent No.: US 9,418,026 B2
(45) Date of Patent: Aug. 16, 2016

(54)

(735)
(73)

")

@
(22)
(86)

87

(65)

(60)

(1)

(52)

TRANSITION BETWEEN STATES IN A
PROCESSOR

Inventor: Ted A Hadley, Sunnyvale, CA (US)

Assignee: Hewlett Packard Enterprise
Development LP, Houston, TX (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 14 days.

Appl. No.: 14/130,871
PCT Filed: Feb. 8, 2012
PCT No.: PCT/US2012/024367

§371 (D),
(2), (4) Date: Jan. 3,2014

PCT Pub. No.: WO02013/012449
PCT Pub. Date: Jan. 24, 2013
Prior Publication Data
US 2014/0130189 A1 May 8, 2014
Related U.S. Application Data

Provisional application No. 61/509,078, filed on Jul.
18, 2011.

Int. Cl.
GO6F 13/16 (2006.01)
HO4L 9/32 (2006.01)
(Continued)
U.S. CL
CPCcccee. GO6F 13/1642 (2013.01); GOG6F 1/24

(2013.01); GO6F 11/2284 (2013.01); GO6F
12/1433 (2013.01); GO6F 12/1483 (2013.01);
GO6F 13/1663 (2013.01); GO6F 21/54
(2013.01); GO6F 21/55 (2013.01); GOGF 21/57
(2013.01); GOGF 21/575 (2013.01); GO6F
21/602 (2013.01); GO6F 21/72 (2013.01);

(Continued)

(58) Field of Classification Search
CPC ..ot GOGF 21/54; HO4L 9/32
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,466,048 Bl 10/2002 Goodman
7,185249 B2* 2/2007 Tkaciketal. 714/726

(Continued)

FOREIGN PATENT DOCUMENTS

CN 1650183 A 8/2005
OTHER PUBLICATIONS

International Searching Authority, Appl. No. PCT/US2012/024367,
filed Feb. 8, 2012, Search Report and Written Opinion, 10pp, dated
Jul. 16, 2012.

(Continued)

Primary Examiner — Beemnet Dada
(74) Attorney, Agent, or Firm — Hewlett Packard Enterprise
Patent Department

(57) ABSTRACT

In one implementation, a processor is provided that includes
logic to enable a transition from a zeroize state to a clear state.
In another implementation, a processor is provided that
includes logic to enable a testing secure state, the testing state
to enable a testing function; logic to enable a clear state, the
clear state to enable a non-secure processing function and to
disable a security function; logic to enable a transition from a
testing secure state to a clear state; and logic to enable a full
secure state, the full secure state to enable the processing
function. In another implementation, a processor is provided
that includes logic to disable a transition from a clear state to
a secure state.

15 Claims, 5 Drawing Sheets

ey

US 9,418,026 B2

Page 2
(51) Int.CL 7398441 Bl 72008 Gee
GOG6F 21/54 (2013.01) 7457,960 B2 11/2008 Kablotsky
GO6F 21/75 (2013.01) 7,844,835 B2 11/2010 Ginter et al.
7954,153 B2 52011 Bancel et al.
HO4L 9/08 (2006.01) 8,819,830 B2* 82014 Hemryetal. .oooocorn.. 726/26
GO6F 1/24 (2006.01) 2003/0140228 Al 7/2003 Binder
GO6F 21/57 (2013.01) 2003/0200453 Al 10/2003 Foster et al.
GO6F 12/14 (2006.01) 2003/0200454 Al 10/2003 Foster et al.
GO6F 21/60 (2013.01) 2004/0088333 Al 5/2004 Sidman
GOG6F 21/55 (2013.01) 2004/0210764 Al 10/2004 McGrath et al.
GO6F 21/72 (2013.01) 2006/0031685 Al 2/2006 Chen et al.
o217 o0 @O A 00 T’
1Zuno
GO6F 21/78 (2013.01) 2007/0237325 Al 10/2007 Gershowitz et al.
G09C 1/00 (2006.01) 2008/0010567 Al 1/2008 Hughes et al.
GO6F 11/22 (2006.01) 2008/0112405 Al 5/2008 Cholas et al.
GO6F 21/74 (2013.01) 2009/0055637 Al 2/2009 Holm et al.
GOIR 31/317 (2006.01) 2009/0290712 Al 11/2009 Henry et al.
(52) US.CL 2009/0293130 Al 11/2009 Henry et al.
& :c— GOGF 21/74 (2013.01); GO6F 21/75 ~ 2010/0057960 AL 3/2010 Renno

. ; 2012/0224691 Al 9/2012 Purohit
(2013.01); GO6F 21/78 (2013.01); GOG6F 21/79 2013/0305380 Al 11/2013 Diehl

(2013.01); GO9C 1/00 (2013.01); HO4L 9/088 5 4io3scoso Al 120014 Ho
(2013.01); HO4L 9/0816 (2013.01); HOAL 9/32
(2013.01); GOIR 31/31719 (2013.01); GOGF

2221/2143 (2013.01); HO4L 2209/12 (2013.01) OTHER PUBLICATIONS

Supplementary Partial European Search Report, European Patent

(56) References Cited Application No. 12814434.2, Jan. 28, 2016, 10 pages.

U.S. PATENT DOCUMENTS

7,265,611 B2* 9/2007 Wangccccocerevrirrnnns 330/9 * cited by examiner

U.S. Patent Aug. 16, 2016 Sheet 1 of 5 US 9,418,026 B2

&
=
. \
Lol
= >~
e
\o o
by v,
i

o Y

S ia

AR 3 &)

i & -
: o
& Li.
Q.

L
3
<t
=
/1 E
%
o8
fam
2 3

U.S. Patent Aug. 16, 2016 Sheet 2 of 5 US 9,418,026 B2

& o
© <)
) wed N %
N\ 0
.
g 2
£ S
&2 o
& @
o ?il/
*
b}
.
v
o8
<3
&

Clear

U.S. Patent Aug. 16, 2016 Sheet 3 of 5 US 9,418,026 B2

44

414

e 416

/ i Testing /
‘_; > g | » Full Secure

Secure

3 | !
N : 5 :
N & s S
\ " S
IS S . e

-~

FIG. 4

504

AT

Clear

L

Testing
Sacure

{

U.S. Patent Aug. 16, 2016 Sheet 4 of 5 US 9,418,026 B2

1’50

Securs

<3

8602

N s

Secire

FIG. 6

&

Fermpor
Crag
SeLUFe

US 9,418,026 B2

Sheet 5 of 5

Aug. 16, 2016

U.S. Patent

FANIIE

PR

i

VS

SR G LY

Lenndd SRL G Lt

\

0L

US 9,418,026 B2

1
TRANSITION BETWEEN STATES IN A
PROCESSOR

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. provisional patent
application No. 61/509,078, filed on Jul. 18, 2011, which is
hereby incorporated by reference herein in its entirety.

BACKGROUND

Integrated circuits are utilized in many electronic devices
and systems. Designing, testing and manufacturing inte-
grated circuits typically follow a design flow. An integrated
circuit may enable one of a plurality of modes, depending on
the stage of the design flow. A state machine may be used to
illustrate the behavior, or state, of the integrated circuit.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an example schematic block diagram of a proces-
sor, according to one or more implementations.

FIG. 2 is an example state machine, according to an imple-
mentation.

FIG. 3 is an example clear state and zeroize state, according
to an implementation.

FIG. 4 is an example clear state, testing secure state and full
secure state, according to an implementation.

FIG. 5 is an example clear state, testing secure state, full
secure state, and zeroize state, according to an implementa-
tion.

FIG. 6 is an example temporary secure state, non-volatile
secure state and full secure state, according to an implemen-
tation.

FIG. 7 is an example illustration of a logic diagram repre-
senting a state machine, according to an implementation.

DETAILED DESCRIPTION

Common processors, for example, microprocessors, pro-
vide no security for code or data stored external to the micro-
processor chip. Secure microprocessors provide for encryp-
tion of all data on external busses. A Federal Information
Processing Standards (FIPS) 140 series are US government
computer security standards that specify requirements for
cryptography modules.

In a secure microprocessor, upon a failure, or breach, of the
microprocessor when in a secure state, secure data may be
erased and the microprocessor zeroized. Due to potential
memory imprinting, the microprocessor may be discarded
and not recycled for reuse.

However, where a secure microprocessor utilizes a non-
imprinting process to avoid imprinting of secure data in
memory, it is not necessary to discard the microprocessor
upon a failure or a breach.

As discussed herein, an apparatus having a processor is
provided. The processor may include a state machine to con-
trol the state of the processor. The processor may include
logic to enable a zeroize state, the zeroize state being a secu-
rity disabled fault state; logic to enable a clear state, the clear
state to enable a non-secure processing function and to dis-
able a security function; and logic to enable a transition from
the zeroize state to the clear state. By providing the ability to
transition from the zeroize state to the clear state, the proces-
sor may be recycled and reused.

10

15

20

25

30

35

40

45

50

55

60

65

2

As further discussed herein, within a secure state, a testing
secure state and a full secure state may be implemented. By
providing for a testing secure state and a full secure state, the
same processor may be tested and then transitioned into a full
secure state, thereby ensuring the quality of the processor. In
addition, it allows for full operation of the secure processing
in a testing state thereby enabling development of secure boot
code and development of decryption and signature validation
operations. For example, the processor may include logic to
enable a testing secure state, the testing state to enable a
testing function; logic to enable a clear state, the clear state to
enable a non-secure processing function and to disable a
security function; logic to enable a transition from a clear
state to the testing secure state; logic to enable a transition
from atesting secure state to a clear state; logic to enable a full
secure state, the full secure state to enable the processing
function; and logic to enable a transition from clear state to
full secure state.

As further described herein, a configuration, for example,
an integrated fuse controlled configuration, may be utilized
which disallows, or allows, the security features from being
made accessible to the user. This allows the manufacturer to
build one chip and sell it in many ways for different prices.
For example, a processor may include logic to enable a secure
state, the state to enable a secure processing function; logic to
enable a clear state, the clear state to enable a non-secure
processing function; and logic to disable a transition from a
clear state to a secure state.

FIG. 1 is a schematic block diagram of a processor includ-
ing a state machine and memory, according to one or more
implementations. Processor 100 may include, state machine
102, memory 104, and key 106. Processor 100 is any of a
variety of processors. For example, processor 100 may be a
general-purpose processor or an application-specific proces-
sor implemented as a hardware module and/or a software
module hosted at a hardware module. A hardware module
may be, for example, a microprocessor, a microcontroller, an
application-specific integrated circuit (“ASIC”), a program-
mable logic device (“PLD”) such as a field programmable
gate array (“FPGA”), and/or other electronic circuits that
perform operations. A software module may be, for example,
instructions, commands, and/or codes stored at a memory and
executed at another processor. Such a software module may
be defined using one or more programming languages such as
Java™, C++, C, an assembly language, a hardware descrip-
tion language, and/or another suitable programming lan-
guage.

In some implementations, processor 100 may include mul-
tiple processors. For example, processor 100 may be a micro-
processor including multiple processing engines (e.g., com-
putation, algorithmic or thread cores). As another example,
processor 100 may be at a computing device including mul-
tiple processors with a shared clock, memory bus, input/
output bus, and/or other shared resources. Furthermore, pro-
cessor 100 may be a distributed processor. For example,
processor 100 may include multiple computing devices, each
including a processor, in communication one with another via
a communications link such as a computer network.

State machine 102 may be implemented as a finite state
machine implemented in hardware and may enable function-
ality in processor 100 in accordance with one or more plural-
ity of states. The state machine may be non-volatile, such that
the security is maintained with a power-off cycle. The state
machine may enable the processor to operate in one of a clear
state, with all security features disabled; in secure state, with
security features active; and in zeroized state, which is the
security disabled fault state. This process allows for easy

US 9,418,026 B2

3

development of secure software by allowing the state to revert
to clear state from secure state under certain circumstances,
and allows for failed units to be repaired and redeployed by
allowing the state to move from zeroize state to clear state
under certain circumstances. Software development, testing,
manufacturing, and initialization are simple. The resulting
structure may be validated by security standards bodies and
be FIPS-140 compliant.

Memory 104 may store key 106. Key 106 may be imple-
mented as, for example, a secure key. While only one key is
depicted, memory 104 may store multiple keys. Processor
100 may provide functionality to secure key 106, for
example, non-imprinting ofkey 106 in memory 104, zeroiza-
tion, for example, fast zeroization, secure access to prevent
unintended reads and writes, etc. In an implementation,
memory 104 is a non-volatile (or non-transient) memory.
Memory may be controlled by a memory control module (not
shown) that facilitates management of the key stored in
memory. Memory control module may be located on the
processor 100. Memory control module may include cir-
cuitry, software hosted at that circuitry, or a combination
thereof to write and erase keys stored in memory.

Key 106 is a data set such as a cryptographic key that is
accessed by processor 100 for use within one or more of
applications such as a cryptographic service hosted at a com-
puting device. In other words, processor 100 requests key 106
at memory control module 240, uses key 106 to perform a
cryptographic process based on instructions or codes stored at
memory 230.

FIG. 2 depicts an example of a state machine according to
an implementation. As shown in FIG. 2, a state machine is
depicted having three states, a clear state 202, a secure state,
204 and a zeroize state 206.

The state machine may enable the processor to operate in
one of a clear state 202, a default state with all security
features disabled; in secure state 204, with security features
active; and in zeroized state 206, which is the security dis-
abled fault state.

The clear state 202 allows the processor to operate as a
regular, non-secure processor. A key may be loaded into
memory while the processor is in clear state.

Logic may be provided that enables the regular processor
to transition to the secure state 204 from the clear state 202
where security features are made accessible for processing
functionality. This logic may be implemented as, for
example, a fuse, antifuse, physically unclonable function
(PUF), or other similar technology, to enable or disable the
transition for a limited number of times.

The secure state 204 allows the processor to operate in a
secure state. A key may be loaded into memory while the
processor is in secure state.

Zeroize state 206 is a state where a key in memory is
zeroized due to, for example, a security violation, a fatal fault,
etc.

Zeroization may be a fast writing process which, for
example, first writes all “1”’s over the key in memory, then
overwrites the memory with all “0”s. Alternatively, other
overwriting processes may be utilized such that the key is
erased in memory.

The following represents the initial state, the final state, and
the cause of each of the transitions noted in FIG. 2. These
transitions, together with the other transitions discussed
herein, may be controlled by hardware, software or a combi-
nation of hardware or software.

20

30

35

40

45

50

Final
State

Transition Initial

Number State Cause

1.1. Clear Clear Boot/reboot in Clear state. This is default
operation of the processor.

Factory initialization.

Engineering and possibly Manufacturing
rework. This transition zeroizes the key in
memory.

This is rebooting when deployed to a
customer in Secure state.

This is a fault transition when, for exam-
ple, a security violation has occurred. This
transition enables the Key in memory be
zeroized.

This is rebooting when in Zeroize state.
This will occur at a customer site, Tech
Support, Manufacturing, Engineering,
etc. This transition enables the key in
memory be zeroized.

This is in Manufacturing when
reworking/repairing a returned unit. This
transition enables the key in memory

be zeroized. This is all power removed.

1.2
1.3.

Clear
Secure

Secure
Clear

1.4. Secure Secure

1.5. Secure Zeroize

1.6. Zeroize Zeroize

1.7. Zeroize Clear

Transition1.1.,1.3.,1.5.,1.6., and 1.7. may include erasing
of'the key in memory.

FIG. 3 is an example clear state and zeroize state, according
to an implementation. As shown in FIG. 3, clear state 302 and
zeroize state 304 are depicted with a transition between them.
After a processor has been zeroized, instead of requiring
disposal of the processor, a transition from the zeroized state
to the clear state is provided wherein the processor can be
reworked and/or repaired such that the processor may be used
again. This transition may be enabled as the key stored in
memory may be subject to memory non-imprinting processes
to avoid imprinting of the key in memory.

A secure state may be implemented by a testing secure state
and full secure state. For example, FIG. 4 depicts an example
clear state 402, testing secure state 404 and full secure state
406. Testing secure state 404 may be a state that enables
testing of functionality of the processor with one or more
security features enabled. Testing secure state 404 may be
enabled via transition 410 from clear state 402. Upon a reset
or a power-off, transition 412 to the clear state 402 is enabled.
Testing secure state 404 may transition via 416 to full secure
state 406.

Full secure state 406 may be state that enables functionality
of'the processing with one or more security features enabled.
Full secure state 406 may be enabled via transition 414 from
clear state 402. Full secure state 406 may not transition to
clear state 402. By not providing for a transition from full
secure state 406 to clear state 402, key stored in memory may
be kept secure.

FIG. 5 depicts an example state machine including clear
state 502, zeroize state 504, testing secure state 506 and full
secure state 508. Clear state 502, testing secure state 506 and
full secure state 508 operate as discussed with respect to FIG.
4. As can be seen in FIG. 5, testing secure state 506 may
transition to clear state 502, full secure state 508, or zeroize
state 504. Zeroize state 504 may be enabled by transitioning
from testing secure state 506 or full secure state 508. Zeroize
state 504 may transition to clear state 502. However, full
secure state 506 may not transition to clear state 502.

Testing secure state may be implemented by a temporary
secure state and a nonvolatile secure state. FIG. 6 is an
example temporary secure state 602, non-volatile secure state
604 and full secure state 606, according to an implementa-
tion.

US 9,418,026 B2

5

The following is a description of the temporary secure state
602, non-volatile secure state 604 and full secure state 606.

State Description
1.B.a.: In this state, the processor is placed in Secure state, but the
Temporary Secure state is cleared and reset to Clear (default) state

Secure State whenever there is a reset or complete power loss (including
backup power). This state may be used only in engineering

and manufacturing (development only).

1.B.b.: In this state, the processor is placed in Secure state, but the
Nonvolatile — Secure state is cleared and reset to Clear (default) state only
(NV) Secure when a total power loss oceurs (including backup power).
State This state may be used in engineering and manufacturing
(for example, initialization of product to Secure state).
1.B.c.: In this state, the processor is placed in Secure state semi-
Full Secure permanently. The only exit from this state is to Zeroize
State State. This may be the standard customer configuration for

product.

The following represents the initial state, the final state, and
the cause of each of the transitions noted in FIG. 6. The
transitions may be controlled by hardware, software or a
combination of hardware or software.

Transition Initial Final
Number State State Cause
1.2.1. Clear Full This is the process of placing the device
Secure into Full Secure state starting from Clear
state.
1.2.2. Clear % This is the process of placing the device
Secure into non-volatile Secure state. This
transition may be used in the normal
startup operation in the factory. This is
also the standard operation in final
engineering test and software quality
assurance.
1.2.3. Clear Temp. This is the process of placing the device in
Secure Temporary Secure state. This may be the
standard operation for software
development.
1.3.1. Temp. Clear Reset or total power loss.
Secure
1.3.2. % Clear Total power loss.
Secure
1.B.1. Temp. NV Configuration change during operation;
Secure Secure only in engineering.
1.B.2. % Temp. Configuration change during operation;
Secure Secure only in engineering.
1.B.3. Temp. Full Configuration change to full secure
Secure Secure
1.B.4. % Full Configuration change to full secure
Secure Secure
1.4.1. Full Full Reboot (by reset) when in full secure
Secure Secure state. This may occur at customer sites.
1.4.2. % % Reboot (by reset) when in non-volatile
Secure Secure secure state. This may happen in
manufacturing as part of unit
configuration.
1.5.1. Full Zeroize Security fault oceurred while in full
Secure secure state.
1.5.2. % Zeroize Security fault occurred while in non-
Secure volatile secure state.
1.5.3. Temp. Zeroize Security fault occurred while in temporary
Secure secure state.

All transitions which leave one of the temporary secure
state 602, non-volatile secure state 604 and full secure state
606 may pass through a zeroization state where the key in
memory is erased.

Temporary secure state may not have a loop-to-self transi-
tion, for example, 1.4.1. and 1.4.2., because any event which
would cause a reboot would also reset this state to clear
(default state).

10

15

25

30

35

40

45

50

55

60

65

6

The only states valid in customer installations are clear
(i.e., not a security module), full secure (i.e., security module
in normal operation), and zeroize (i.e., a security module
following a security fault).

Temporary secure state 602 and non-volatile secure state
604 allow for ease in development, testing, and manufactur-
ing.

For example, during the code development phase, the tem-
porary secure state 602 may be used to allow easy resetting of
the processor to clear state for further testing and develop-
ment.

In addition, secure code, including secure boot code, may
be developed. Any reset allows for a quick return to the clear
state.

During finalization of the code development, non-volatile
secure may be used to, for example, fully test secure boot
code since more effort than a simple reset is needed to revert
to the default clear state.

In manufacturing, a product utilizing this state machine
model may boot initially in clear state. A final test program
may test and diagnose the final hardware.

The final test program (or another initialization program)
may load the system keys and other data into secure key
memory, and advance the state to non-volatile secure state. A
reset may cause the secure product application to boot. If it is
decrypted correctly and runs, it will examine the state
machine and, seeing the state is non-volatile secure state, may
advance the state to full secure. This is the product deliverable
state. Thus, when in the full secure state, the processor was
likely tested, initialized, loaded, and retested in secure state. If
a failure occurs anytime before the secure product application
runs, since the state machine is still in non-volatile secure
state, all that is needed is full removal of power to cause all
state information to be lost. When restarted, it will be in clear
state, and able to reinitialize.

FIG. 7 depicts an example logic diagram of logic to imple-
ment the state machine as depicted in FIG. 5. The components
of'the circuit may be powered non-volatively such that, when
power is cycled, state and security are maintained.

The states in the state machine may be changeable both by
hardware and by software. This allows hardware signals to
change the state, such as an attack forcing zeroization, and
also allows software to change the state, such as a manufac-
turing organization performing initialization and placing the
unit into secure state (from clear state).

The state machine may be capable of rejecting improper
transitions. An example is transitioning from zeroize to
secure state.

One bit may be provided for each state. In the example in
FIG. 7, four states are provided, thus, the state variable has
four bits: clear state: 0001, testing secure state: 0010, full
secure state: 0100 and zeroize: 1000.

When hardware or software initiates change of state, the bit
for the desired state is set to 1. If the transition is allowed, the
state variable will change to the new value with only 1 bit set.
If the transition is not allowed, the state variable will remain
unchanged.

As shown in FIG. 7, a plurality of inputs is provided.
Factory reset 702 (active LOW) may be used once, for
example, in the factory, to initialize the state machine. Alter-
natively, inherent initialization may be utilized. Assert clear
704 asserts the clear state. Assert testing secure 706 asserts
the testing secure state. Assert full secure 708 asserts the full
secure state. Assert zeroize 710 assets the zeroize state. State
machine dock 712 represents a transition that takes place
whenever a value is written to the state machine. State
Machine dock may be a continuous dock, a discontinuous

US 9,418,026 B2

7

clock, a memory read- or write-enable signal, or any other
signal source where a low-to-high transition takes place for
any state transition to be recognized by the state machine
hardware.

The plurality of inputs, in combination with the state
machine clock 712, may be utilized to change the value of the
state machine. The plurality of inputs may be controlled by
software, hardware, or both.

In one or more implementations, software may not be given
the ability to cause a transition to zeroize state. For example,
the assert zeroize signal may not be connected to the proces-
sor in such a way that software can write to it. In the cases
where software and hardware are both allowed to change the
state, simply OR-ing the hardware signal with the software
signal prior to connecting to the input of the state machine
may be sufficient.

Input signals assert clear 504, assert testing secure 706,
assert full secure 708 and assert zeroize 710 are provided to
respective inverters and to AND gates 714, 716, 718 and 720.
AND gates 714, 716, 718 and 720 ensure that no improper
inputs are provided to the circuit by ensuring that only one of
the four input signals are asserted. If more than one input
signal is asserted, or no input signal is asserted, then the NOR
gate 722 outputs HIGH such that none of the asserted input
signals are passed into the circuit.

Eleven NAND gates 724 correspond to the rules to be
applied when transitioning from one state to another state.
Each of the eleven NAND gates enables one of the transitions
noted in the table below. NAND gates 724 receive requested
(input) state via AND gates 714, 716, 718 and 720 and NOR
gate 722. NAND gates 724 receive current state values from
flip-flops 734, 736, 738 and 740, discussed below. NAND
gates 724 enable transitions in accordance with the following
rules in order to determine the new state the state machine will
transition to.

The following table includes the requested input state, the
current state, and the new state that the state machine transi-
tions to.

Requested (Input) State Current State New State
Zi Si Ti Ci Z S T C Zn Sn Tn Cn
0 1 0 0 0 0 0 1 0 1 0 O
0 0 1 0 0 0 0 1 0 0 1 O

All other values 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 0O 1 0 0 0
All other values 0 1 0 o 0o 1 0 o0
1 0 0 0 0 0 1 0O 1 0 0 0
0 0 1 0 0 0 1 0O 0 0 1 0
0 0 0 1 0 0 1 0O 0 0 0 1
All other values 0 0 1 o 0 o0 1 o0
0 0 0 1 1 0 0 0O 0 0 0 1
All other values 1 0 0 o 1 0 0 o0

Outputs from NAND gates 724 are input to NAND gates
726, 728, 730 and 732 and input to flip-flops 734, 736, 738
and 740. Flip-flops 734, 736, 738 and 740 may correspond to
clear state, testing secure state, full secure state, and zeroize
state. Flip-flops 734, 736, 738 and 740 may be implemented
as, for example, D-type flip-flops, implementing a state vari-
able latch, that hold the state value.

Flip-flops 734,736, 738 and 740 may output state value via
clear output 742, testing secure output 744, full secure output
746 and zeroize output 748. Outputs represent raw state
machine value and may be provided to the processor through
a bus buffer or latch, or may be utilized to control other
hardware functions.

10

20

35

40

45

50

55

60

65

8

What is claimed is:

1. An apparatus, comprising:

a processor that

enables a clear state, the clear state to enable a non-
secure processing function and to disable a security
function;

enables a secure state that comprises a temporary secure
state and a non-volatile secure state, the secure state to
enable a secure processing function;

enables a transition from the temporary secure state to
the clear state, wherein the transition to the clear state
from the temporary secure state is enabled based on a
reset pulse; and

enables a transition from the non-volatile secure state to
the clear state, wherein the transition to the clear state
from the non-volatile secure state is enabled based on
a power loss.

2. The apparatus of claim 1, the processor that:

enables a zeroize state, the zeroize state being a security

disabled fault state; and

transitions from the zeroize state to the clear state.

3. The apparatus of claim 2, wherein the zeroize state
enables at least one key in a memory coupled to the processor
be erased.

4. The apparatus of claim 2, the processor that:

enables a transition (i) from the secure state to the zeroize

state or (ii) from the clear state to the secure state.

5. The apparatus of claim 2, wherein the secure state further
comprises a full secure state, the processor that:

enables a transition from the full secure state to the zeroize

state, wherein the transition to the zeroize state from the
full secure state is enabled based on a security violation.

6. A method comprising:

enabling a clear state in which a processor operates, the

clear state to enable a non-secure processing function
and to disable a security function;

enabling a secure state in which the processor operates, the

secure state comprising a temporary secure state and a
non-volatile secure state, the secure state to enable a
secure processing function;

enabling a transition from the temporary secure state to the

clear state, wherein the transition to the clear state from
the temporary secure state is enabled based on a reset
pulse; and

enabling a transition from the non-volatile secure state to

the clear state, wherein the transition to the clear state
from the non-volatile secure state is enabled based on a
power loss.

7. The method of claim 6, wherein the secure state further
comprises a full secure state.

8. The method of claim 7, further comprising:

enabling a transition from the clear state to the temporary

secure state or the non-volatile secure state;

enabling a transition from the temporary secure state or the

non-volatile secure state to the clear state; and
enabling a transition from the clear state to the full secure
state.

9. The method of claim 7, further comprising:

enabling a zeroize state, the zeroize state being a security

disabled fault state;

enabling a transition from the full secure state to the zeroize

state.

10. The method of claim 7, further comprising:

enabling a transition from the temporary secure state or the

non-volatile secure state to the full secure state.

US 9,418,026 B2

9

11. The method of claim 7, further comprising:

enabling a transition from the clear state to the full secure

state.

12. The method of claim 9, wherein the transition to the
zeroize state from the full secure state is enabled based on a
security violation.

13. An apparatus, comprising:

a processor comprising a state machine that:

enables a clear state, the clear state to enable a non-
secure processing function;

enables a secure state comprising a temporary secure
state and a non-volatile secure state, the secure state to
enable a secure processing function, wherein:

a transition from the temporary secure state to the clear
state is enabled based on a reset pulse, and

atransition from the non-volatile secure state to the clear
state is enabled based on a power loss.

14. The apparatus of claim 13, the state machine that:

disables a transition from the clear state to the secure state;

and

enables the disabled transition from the clear state to the

secure state.

15. The apparatus of claim 13, wherein the secure state
further comprises a full secure state that is transitioned to a
zeroize state based on a security violation.

#* #* #* #* #*

10

15

20

25

10

