US009418027B2

a2 United States Patent
Hadley

US 9,418,027 B2
Aug. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54) SECURE BOOT INFORMATION WITH
VALIDATION CONTROL DATA SPECIFYING
A VALIDATION TECHNIQUE

Inventor:

(75) Ted A Hadley, Sunnyvale, CA (US)

(73) Assignee: Hewlett Packard Enterprise
Development LP, Houston, TX (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Notice:

")

1) 14/233,334

(22)

Appl. No.:

PCT Filed: Mar. 30,2012

(86) PCT No.:

§371 (),
(2), (4) Date:

PCT/US2012/031542

Jan. 16, 2014

(87) PCT Pub. No.: W02013/012461

PCT Pub. Date: Jan. 24, 2013

(65) Prior Publication Data

US 2014/0189340 A1 Jul. 3, 2014

Related U.S. Application Data

Provisional application No. 61/509,078, filed on Jul.
18, 2011.

(60)

Int. Cl1.
GO6F 21/78
GO6F 13/16

(51)
(2013.01)
(2006.01)

(Continued)

(52) US.CL

CPC GO6F 13/1642 (2013.01); GOG6F 1/24
(2013.01); GO6F 11/2284 (2013.01); GO6F

12/1433 (2013.01); GO6F 12/1483 (2013.01);

GOGF 13/1663 (2013.01); GOGF 21/54
(2013.01); GOGF 21/55 (2013.01); GOGF 21/57
(2013.01):

(Continued)
(58) Field of Classification Search
CPC GOG6F 21/78

USPC 713/189
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5/1965 Howe et al.
1/1984 Stanley et al.

(Continued)

3,183,498 A
4,424,561 A

FOREIGN PATENT DOCUMENTS

CN
CN

1650183 A 8/2005
1820235 A 8/2006

(Continued)
OTHER PUBLICATIONS

“ARM Security Technology Budding a Secure System Using
TrustZone® Technology”, < http://infocenter.arm.com/help/topic/
com.arm.doc.prd29-genc-009492¢/PRD29-GENC-009492C__
trustzone__security_ whitepaper.pdf > Issue: C, 2009.

(Continued)

Primary Examiner — William Powers
(74) Attorney, Agent, or Firm — Hewlett Packard Enterprise
Patent Department

(57) ABSTRACT

Examples disclosed herein relate to secure boot information
with validation control data specifying a validation tech-
nique. Examples include determining, with the specified vali-
dation technique, whether validation data is consistent with
the secure boot information.

15 Claims, 5 Drawing Sheets

100~
110

INTEGRATED GIRGUIT (1C}

\

PROCESSOR

INSTRUCTIONS TO RETRIEVE SECURE
BOCT INFO

120
MAGHINE-READABLE STORAGE MEDIUM 1]

|~ 160
SECURE BOOT

INSTRUGTIONS TO DETERMINE
CONSISTENCY WITH ANY OF THE
VALIDATION TECHNIQUES

INSTRUCTIONS TO DETERMINE

15 INFORMATION
N v

SPECIFIED VALIDATION TECHNIQUE }/

CRYPTOGRAPHY
MOBULE

INSTRUCTIONS TO BOOT COMPUTING |_{4
DEVICE WITH BECURE BOOT

INSTRUCTIONS {F VALIDATED

156
ENCRYPTED
SECURE BOOT \
INFORMATION

-
-

;;;;

156~
EXTERNAL STORAGE

VALIDATION CONTROL DATA

VALIDATION TECRNIQUE ID

162

|-164

SECURE BOOT INSTRUCTIONS

| 170

VALIDATION DATA

| -168

US 9,418,027 B2

Page 2

(1)

(52)

(56)

Int. CL.
HO4L 9/32 (2006.01)
GO6F 21/54 (2013.01)
GO6F 21/75 (2013.01)
HO4L 9/08 (2006.01)
GO6F 1/24 (2006.01)
GO6F 21/57 (2013.01)
GO6F 12/14 (2006.01)
GO6F 21/60 (2013.01)
GO6F 21/55 (2013.01)
GO6F 21/72 (2013.01)
GO6F 21/79 (2013.01)
G09C 1/00 (2006.01)
GO6F 1122 (2006.01)
GO6F 21/74 (2013.01)
GOIR 31/317 (2006.01)
U.S. CL
CPC GOG6F 21/575 (2013.01); GOG6F 21/602
(2013.01); GOGF 21/72 (2013.01); GOGF 21/74
(2013.01); GOGF 21/75 (2013.01); GO6F 21/78
(2013.01); GO6F 21/79 (2013.01); GOIC 1/00
(2013.01); HO4L 9/088 (2013.01); HO4L
9/0816 (2013.01); HO4L 9/32 (2013.01); GOIR
31/31719 (2013.01); GOGF 2221/2143
(2013.01); HO4L 2209/12 (2013.01)
References Cited
U.S. PATENT DOCUMENTS
5,131,040 A 7/1992 Knapezyk
5,214,760 A 5/1993 Hammond et al.
5,249,286 A 9/1993 Alpert et al.
5,379,378 A 1/1995 Peters et al.
5,406,630 A 4/1995 Piosenka et al.
5,450,082 A 9/1995 Finley et al.
5,469,564 A 11/1995 Junya
5497497 A 3/1996 Miller et al.
5,568,529 A 10/1996 Masuda
5,600,576 A 2/1997 Broadwater et al.
5,682,328 A 10/1997 Roeber et al.
5,825,878 A 10/1998 Takahashi et al.
5,872,967 A 2/1999 DeRoo et al.
5,937,063 A 8/1999 Davis
5,987,557 A 11/1999 Ebrahim et al.
6,078,873 A 6/2000 Shutty et al.
6,148,362 A 11/2000 Sagi
6,188,603 Bl 2/2001 Takada
6,243,812 Bl 6/2001 Matyas
6,292,898 Bl 9/2001 Sutherland
6,377,691 Bl 4/2002 Swift et al.
6,378,072 Bl 4/2002 Collins et al.
6,424,143 Bl 7/2002 Blossfeld et al.
6,463,535 B1* 10/2002 DIEWS ...ccovvververnrrnrann. 713/176
6,466,048 B1 10/2002 Goodman
6,553,492 Bl 4/2003 Hosoe
6,553,496 Bl 4/2003 Buer
6,625,727 Bl 9/2003 Moyer et al.
6,687,140 B2 2/2004 Kitamura
6,704,865 Bl 3/2004 Duff
6,745,306 Bl 6/2004 Willman et al.
6,789,182 Bl 9/2004 Brothers et al.
6,835,579 B2 12/2004 Elward
6,836,548 B1 12/2004 Anderson et al.
6,859,876 B2 2/2005 Dykes et al.
6,910,094 Bl 6/2005 Eslinger et al.
6,928,551 Bl 8/2005 Leeetal.
7,039,816 B2 5/2006 Kocher et al.
7,057,396 B2 6/2006 Nagase
7,062,615 B2 6/2006 Miller et al.
7,107,459 B2 9/2006 Caronni et al.
7,130,752 B2 10/2006 Yoshida et al.
7,185,249 B2 2/2007 Tkacik et al.

7,218,567
7,222,053
7,237,121
7,265,611
7,299,347
7,299,365
7,305,534
7,360,073
7,398,441
7,423,529
7,424,398
7,457,960
7,512,719
7,525,836
7,549,064
7,568,112
7,571,475
7,580,919
7,657,760
7,667,997
7,681,024
7,729,156
7,733,250
7,757,098
7,761,904
7,774,619
7,793,067
7,831,839
7,844,835
7,937,596
7,949,912
7,954,153
7,966,467
8,027,927
8,572,410
8,621,597
8,819,839
2001/0010086
2002/0120851
2002/0129195
2003/0133574
2003/0140228
2003/0197638
2003/0200453
2003/0200454
2004/0078664
2004/0088333
2004/0148480
2004/0153593
2004/0210764
2004/0267847
2005/0091554
2005/0120216
2005/0144358
2005/0154903
2005/0235166
2006/0010356
2006/0023486
2006/0031685
2006/0059345
2006/0059373
2006/0059374
2006/0090084
2006/0095726
2006/0101241
2006/0155988
2006/0168212
2006/0179302
2006/0179324
2006/0184791
2006/0208884
2006/0215437
2006/0225142
2006/0247873
2007/0067644
2007/0136576
2007/0136606
2007/0140477
2007/0174909

5/2007
5/2007
6/2007
9/2007
* 112007
11/2007
12/2007
4/2008
7/2008
9/2008
9/2008
11/2008
3/2009
4/2009
6/2009
7/2009
8/2009
8/2009
2/2010
2/2010
3/2010
6/2010
6/2010
7/2010
7/2010
8/2010
9/2010
11/2010
11/2010
5/2011
5/2011
5/2011
6/2011
9/2011
*10/2013
12/2013
82014
7/2001
8/2002
9/2002
7/2003
7/2003
10/2003
10/2003
10/2003
4/2004
5/2004
7/2004
8/2004
10/2004
12/2004
4/2005
6/2005
6/2005
7/2005
10/2005
1/2006
2/2006
2/2006
3/2006
3/2006
3/2006
4/2006
5/2006
5/2006
*7/2006
7/2006
8/2006
8/2006
8/2006
9/2006
9/2006
10/2006
11/2006
3/2007
6/2007
6/2007
6/2007
7/2007

Trimberger et al.
Snyder et al.
Cammack et al.
Wang
Kao
Evans

Watt et al.

Billstrom et al.

Gee

Singer et al.

Booth et al.

Kablotsky

Gillespie

Backus et al.

Elbert et al.

Yamaguchi

Moon

Hannel et al.

Teramoto et al.

Rodriguez

Kwon

Rodriguez et al.

Tsyrganovich

Brannock et al.

Hessel et al.

Paaske et al.

Kegel et al.

Hatakeyama

Ginter et al.

Mackey et al.

Trimberger

Bancel et al.

Ludloff et al.

Ogg et al.

Tkacik et al. 713/193
Jenkins

Henry et al.

Katayama et al.

Clarke

Hongo et al.

Caronni et al.

Binder

Bloebaum et al.

Foster et al.

Foster et al.

Takahashi

Sidman

Watt et al.

Watt et al.

McGrath et al.

Harper

Loukianov

Leeetal.

Conley et al.

Evans

England et al.

Snyder et al.

Furusawa et al.

Chen et al.
Fayad et al.
Fayad et al.
Hameau et al.
Buer
Zaabab et al.
Curran et al.
Hunter et al.
Parsons et al.
Hatakeyama
Hatakeyama
Schain et al.
Diamant
Trika et al.
Moon

Fung et al.
Flynn et al.
Chambers et al.
Mizuno

Wise

Burchett et al.

................. 713/164

US 9,418,027 B2

Page 3
(56) References Cited EP 1762855 Al 3/2007
Jp 1201762 8/1989
U.S. PATENT DOCUMENTS TP 06-028885 2/1994
Jp 08-069697 3/1996
2007/0192610 Al 8/2007 Chun et al. P 1131068 2/1999
2007/0192828 Al 8/2007 Messina et al. P 2008192036 8/2008
2007/0204170 Al /2007 Oren et al. WO WO-9745980 Al 12/1997
2007/0226494 Al 9/2007 O’Brien et al. wo WO-9931665 6/1999
2007/0237325 Al 10/2007 Gershowitz et al. WO WO-2011080841 A1 772011
2007/0237332 Al 10/2007 Lyle
2007/0283140 Al 12/2007 Jones et al. OTHER PUBLICATIONS
2008/0005577 Al* 1/2008 Rageretal. 713/183 w . Y
2008/0005586 Al 1/2008 Munguia Anderson, R. et al., “Cryptographic Processors—A Survey,” Pro-
2008/0010567 Al 1/2008 Hughes et al. ceedings of the IEEE, vol. 94, No. 2, Feb. 2006, pp. 357-369.
2008/0072018 Al 3/2008 Leetal. Bialas; “Intelligent Sensors Security”, Sensors, Institute of Innova-
2008/0112405 Al 5/2008 Cholas et al. tive Technologies EMAG, 40-189 Katowice, ul. Leopolda 31,
2008/0137848 Al 6/2008 Kocher et al. Poland, ISSN 1424-8220, Jan. 22, 2010. <www.mdpi.com/journal/
2008/0162848 Al 7/2008 Broyles et al. Sensors>.
%882;8}?;2% ﬁ} ;gggg]S)Iirél‘:};f;fl' Dattq et _al.; “C_alib_ra,t,ion o_f On-_Chip Thermal Sensors using Process
Monitoring Circuits”, University of Massachusetts, Amherst, MA
2008/0183305 Al 7/2008 Foster et al.
2008/0184038 Al 7/2008 Fitton USA, IEEE 978-1-4244-6455-5/10, 2010. .
2008/0276092 Al 11/2008 Eberhardt et al. Fields, et al; “Cryptographic Key Pr_otectlon M_odule in Hardware for
2008/0282345 Al 11/2008 Beals the Need2know System”, < http://ieeexplore.iece.org/stamp/stamp.
2009/0031135 Al 1/2009 Kothandaraman jsp?arnumber=1594225 > on pp. 814-817; vol. 1, Aug. 7-10, 2005.
2009/0055637 Al 2/2009 Holm et al. Gilmont, et al; “An Architecture of Security Management Unit for
2009/0138699 Al 5/2009 Miyazaki et al. Safe Hosting of Multiple Agents”, < http://citeseerx.ist.psu.edu/
2009/0150546 Al 6/2009 Ryan viewdoc/summary?doi=10.1.1.21.3663 > on pp. 79-82, 1998.
2009/0150662 Al 6/2009 Dgsselle etal. International Search Report and Written Opinion received in PCT
%883;81 ;‘2‘3‘82 ﬁi %883 grl_ce etal. Application No. PCT/US2011/065081, mailed Jul. 25, 2012, 9 pgs.
2009/0196418 Al /2000 Tl(zln?k | International Search Report and Written Opinion received in PCT
acik etal. Application No. PCT/US2011/066750, mailed on Sep. 20, 2012, 10
2009/0259854 Al 10/2009 Cox etal. pes
2009/0262940 Al 10/2009 Li :
2009/0271619 Al 10/2009 F:lrjlzl et al. Interr_lati(_)nal Search Report and Written Qpinion received in PCT
2009/0276617 Al 11/2009 Grell et al. Appllca.tlon No. PCT/U82012/02052.8, malle.dAug. 22,.2012., 9 pgs.
2009/0290712 Al 11/2009 Henry et al. International Search Report and Written Opinion received in PCT
2009/0292732 Al 11/2009 Manolescu et al. Application No. PCT/US2012/023385, mailed May 22, 2012, 10
2009/0293130 Al 11/2009 Henry et al. pegs.
2009/0328201 Al 12/2009 Jin et al. International Search Report and Written Opinion received in PCT
2010/0037069 Al 2/2010 Deierling etal. Application No. PCT/US2012/023794, mailed Sep. 24, 2012, 9 pgs.
2010/0057960 Al 3/2010 Renno International Search Report and Written Opinion received in PCT
%8}8;88?‘7‘ gg 2} ggg}g égrllge; al. Application No. PCT/US2012/024367, mailed Jul. 16, 2012, 10 pgs.
2010/0088730 Al 4/2010 Hall et al. K‘terl?at‘t?naksea;é}ﬁfg%tl ;‘ch Y\szlgten (.)IP‘C{“SO“ e gi‘zmg PCT
2010/0268942 Al 10/2010 Hernandez-Ardieta et al. ppucation Ko- > MaLea Sep. 27, 2772, 7 Dgs.
2010/0312940 Al 12/2010 Shinohara Interr.latl(.)nal Search Report and Written Qplmon received in PCT
2011/0012709 Al 1/2011 Payson etal. Appllcat.lon No. PCT/US2012/065066, mal.led Jul. 16, 2012, 9 pgs.
2011/0026831 Al 2/2011 Perronnin et al. Sun Microsystems, “Sun Cryptographic Accelerator 40007,
2011/0095776 Al 4/2011 Yunoki Firmware Version 1.1, FIPS 140-2 Non-Proprietary, Security Policy,
2011/0116635 Al 5/2011 Bar-el Level 3 Validation, Aug. 6, 2004, pp. 1-20, <oracle.com/technetwork/
2011/0154501 Al 6/2011 Banginwar topics/security/140sp457-160924.pdf>.
2011/0185165 Al 7/2011 Hagaet al. Yang, et al; “Improving Memory Encryption Performance in Secure
%8}%8?22232 2} * 1%@8}5 Eha etal. i 726/6 Processors”, < http://ieeexplore.icee.org/stamp/stamp.
con jsp? ber=1407851 > on pp. 630-640; vol. 54; Issue 5, Ma;
Jsprarnumber pp B ; ,» May
2012/0224691 Al 9/2012 Purohit 2005.
2012/0246432 Al 9/2012 Hadley et al. Cengage Learning, “The Hexadecimal Number System and Memory
%8}%;83%222? 2} liggg Eozizlurm etal. Addressing” May 16, 2011, <http://web.archive.org/web/
adiey 20110516210838/http://college.cengage.com/coursemate/technol -
2013/0024716 Al /2013 Hadley ogy__education/andrews_ 9781435497788/unprotected/book
2013/0031290 Al 1/2013 Sc_hwartz etal. level/The_ Hexadecimial _Number_ System__and_Memory__
2013/0305380 Al 11/2013 Diehl Addressine pdf>
2014/0115698 Al 42014 Jogand-Coulomb et al. Rick Smit}i p“Au'thentication ” (excerpt), Feb. 2002, <http://www.
2014/0130189 Al 5/2014 Hadley visi.com/c ’ to/> ’ ’ ’
2014/0140512 Al 52014 Hadley SO CIyPLor. . .
% D. Ibrahim, “Design of a multichannel temperature data logger with
2014/0149729 Al 5/2014 Hadleyccccccoovvvvnnnn. 713/1 < .
SD card storage,” Electronics World, Feb. 2009, <http://www.
2014/0156961 Al 6/2014 Hadley K m/downloads/eet/789/data 1 02 09 pdf>
2014/0165206 Al 6/2014 Hadley mikroe.com/downloads/get/789/data_logger_ew_02_09.pdb>.
2014/0358949 Al 12/2014 Hu Dedrick et al., “An inexpensive, microprocessor-based, data logging
system,” Computers & Geosciences, 2000, vol. 26, pp. 1059-1066.
Extended Furopean Search Report, Feb. 5, 2015, Furopean Patent
FOREIGN PATENT DOCUMENTS Application No. 12814537.2, 6 pages.
CN 1886939 A 12/2006 Hobbizine, “adding memory with i2¢ eeproms,” May 16, 2010, (web
CN 101120353 A 2/2008 page), <http://picaxe.hobbizine.com/eeprom.html>.
CN 101426012 A 5/2009 Limor, “Logger Shield: Datalogging for Arduin.o,” (Web page), May
CN 101478538 A 7/2009 17, 2011, <http://www.ladyada.net/make/logshield/index html>.
CN 101995301 3/2011 Machine Translation of Koizumi et al. (W0O2011/080841), obtained
EP 0987625 3/2000 via Google Translate on Mar. 23, 2015.

US 9,418,027 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Maxim Integrated Products, “DS1678 Real-Time Event Recorder,”
2005, <http://datasheets.maximintegrated.com/en/ds/DS1678.pdf>.
Microsoft Corp., “BitLocker Drive Encryption: Scenarios, User
Experience, and Flow,” May 16, 2006, available at: <http://msdn.
microsoft.com/en-us/library/windows/hardware/gg463 165.aspx>.
Microsoft Corp., “BitLocker Drive Encryption: Technical Over-
view,” May 16, 2006.

Microsoft, “How To: Configure MachineKey in ASPNET 2.0,” avail-
able Mar. 9, 2012, <http://msdn.microsoft.com/en-us/library/
£f649308.aspx>.

National Institute of Standards and Technology, “Security Require-
ments for Cryptographic Modules,” FIPS PUB 140-2, May 25,2001,
<http://csre.nist.gov/publications/fips/fips140-2/fips 1402 .pdf>.
National Institute of Standards and Technology, “Security Require-
ments for Cryptographic Modules,” FIPS PUB 140-3, Draft, p. 16,
Sep. 11, 2009, and Annexes A-G <http://csrc.nist.gov/publications/
PubsDrafts. htmI#FIPS-140—3>.

Raafat. S. Habeeb, “Design a Programmable Sequence Controller
Utilizing 12C BUS,” 2011, Journal of Madenat Alelem College, vol.

3, iss. 2, pp. S-25,
&ald=60778>.
Revolution Education Ltd., “Picaxe Datalogger (AXE110P),” ver-
sion 2.0, (web page), Dec. 2010, <http://www.picaxe.com/docs/
axel10.pdf>.

Supplementary European Search Report, Apr. 22, 2015, European
Patent Application No. 11869688.9, 6 pages.

ViaSat, Inc., “Requirements Description for an Advanced Crypto-
graphic Module (ACM) to Support the High Capacity Communica-
tions Capability (HC3),” Technical Report, Oct. 18, 2005, <http://
cryptome.org/acm-hc3. htm>.

Yang, et al; “Improving Memory Encryption Performance in Secure
Processors”, <http://ieeexplore.icee.org/stamp/stamp.
jsp?arnumber=1407851 > On pp. 630-640; vol. 54; Issue: 5, May,
2005.

Yao, et al.; “Calibrating On-chip Thermal Sensors in Integrated Cir-
cuits: A Design-for-Calibration =~ Approach”, Springer
Science+Business Media, LLC 2011, Sep. 21, 2011.
Supplementary Partial European Search Report, European Patent
Application No. 12814434.2, Jan. 28, 2016, 10 pages.

<http://www.iasj.net/iasj? func=fulltext

* cited by examiner

U.S. Patent Aug. 16, 2016 Sheet 1 of 5 US 9,418,027 B2
100) INTEGRATED CIRCUIT (10)
1o — — —— 120
5\ MACHINE-READABLE STORAGE MEDIUM
. INSTRUCTIONS TO RETRIEVE BECURE |41 122
) r:‘ 5, LY ¥
PROCESSOR BOGT INFO
INSTRUGTIONS TO DE TERMINE
160 CONSISTENCY WITH ANY OF THE | b+ 124
L 1B VALIDATION TECHNIQUES
- SECURE ROOT _
115 INFORMATION INSTRUCTIONS TO DETERMINE 128
\ X SPECIFIED VALIDATION TECHNIQUE
CRYPTOGRAPHY Y NSTRUCTIONS TO BOOT COMPUTING 14128
MODULE v DEVICE WiTH SECURE BOOT
3 INSTRUCTIONS IF VALIDATED
kY
§
- 158
ENGRYPTED
SECURE BOOT
INFORMATION e
199 I — mﬁ? |~ 162
EXTERNAL STORAGE ’ C '
VALIDATION TECRNIQUE 1D |~ 184
SECURE BOOT INSTRUCTIONS |~ 17¢
VALIDATION DATA 68

FIG. 1

U.S. Patent Aug. 16, 2016 Sheet 2 of 5 US 9,418,027 B2
U COMPUTING DEVICE
200 INTEGRATED CIRCUIT f0)
MACHINE-READABLE STORAGE Mepium 1%
110 INSTRUCTIONS TO RETRIEVE SECURE L1122
BOQT INFO
BROCESSOR !NSTQUGT?DNg TO DETERMINE 4
CONSISTENCY WiTH ANY OF THE 14T
; VALIDATION TECHNIGUES
50 [ERROR-DETECTION INSTRUCTIONS H 232
a -
SECURE BOOT [hasenewstRucTions | KT
INFORMATION
2164 [INTERNAL DIGITAL SIGNATURE INSTRUCTIONS HHT4%¢
STORAGE
T ‘ INSTRUCTIONS TOTDENTIFY A | |25
|~ 160 CONTROL DATAFLAG
SECURE 800T
INEORMATION INSTRUCTIONS TG DETERMINE {4126
x\ SPECIFIED VALIDATION TECHNIQUE
s A ISTR ONST $ "3 NG 4428
15~ omvp \ INSTRUCTIONS TO BOUT COMPUTING | L+12
CRY T(f}G:RAPHY : DEVICE WITH SECURE BOOT
MODULE \ : £
. INSTRUCTIONS
b
F \\
1
156~ T —
ENCRYPTED i T
SECURE BOOT : _
INFORMATION CONTROL DATA FLAG 267
X e
155~ VALIDATION CONTROL DATA | 16
EXTERNAL STORAGE | VALIDATION TECHNIQUE D |4~ 164
[VALIDATION LENGTH 286
[VALIDATION PARANETERS 2%
SECURE BOOT INSTRUCTIONS |14
VALIDATION DATA 188

FIG. 2

U.S. Patent Aug. 16, 2016 Sheet 3 of 5 US 9,418,027 B2

300
\1
INTEGRATED CIRCUIT (10)
18 314 cm;ggiiépw INTERNAL STORAGE JR
\ ' INTERNAL INSTRUCTIONS 792t
MEMORY INSTRUCTIONS TO ASSOCIATE [M7322
MANAGEMENT UNIT g SECURE REGION WITH CRYPTO
PROCESSOR TECHNIQUE
SECURE| FIRST
T\ reion | GRYPTO {Fatel]| RESET || ap INSTRUCTIONS TO REQUEST TO .
WNFG | DATA wanoier 10 READ SECURE BOOT INFORMATION HH 9%
N - INSTRUCTIONS TO DETERMINE | |}4328
CRYPTG CRYFTO RE@Q;\ %0 VALIDATION TECHNIGUE
INED WNEQ | eeoEl b peY 108
570 REQUEST SECURE BOOT INSTRUCTIONS TO DETERMINE HH™
"™ secure sToRAGE INFORMATION ||| CONSISTENGY WITH ANY OF THE
7771 VALIDATION TECHNIQUES
cen] CRYPTOINFO 1 {| Lyl CRYPTOGRAPHY
AN TEGHTD MODULE INSTRUCTIONS TO EXECUTE ||] 500
STATN L PARAMETERS 7 ~ SECURE BOOT INSTRUCTIONS]
118
3TZBN, - | STATE STORAGE {M""‘"m
w7451l | CRYPTONFO 2 e
I TEGHT] 156~ | vaupamonresut T
3?88“\1 PARAMETERS | ENCRYPTED
1 sEcuREBOOT
. INFORMATION

1T EXTERNAL STORAGE

S SECURE REGION

£33
pend
L

B0 ALTERNATE REGION

FIG. 3

U.S. Patent Aug. 16, 2016 Sheet 4 of 5 US 9,418,027 B2

e

MAP FIRST SECURE REGION TGO FIRST B 405
CRYPTOGRAPHIC TECRNIQUE

¥

CONFIGURE CRYPTOGRAPRY MODULE | 449
WITH FIRST TECHNIQUE IN RESPONSE TO
REQUEST TO READ FROM FIRSY REGION

3
DECRYPT FIRSY BOOT INFO WITH HIRST 415
TECHNIQUE

|

T 420

FIRSY =
TECHNIGUE?

¥ - 430

DETERMINE DETERMINE
WHETHER - 425 WHETHER
COMSISTENT CONSISTENT
WITH FiRST WITH SECOND
TECHNIQUE TECHNICUE
¥ ¥
EXECUTE BECURE BOOT INSTRUCTIONS IF 435
CONSISTENT

FlG. 4

U.S. Patent Aug. 16, 2016 Sheet 5 of 5 US 9,418,027 B2

reb]
=2
S

MAP FIRST GECURE REGION TO FIRST L~ §05
CRYPTOGRAPHIC TECHNIQUE

¥
MAP BECOND SECURE REGION TO SECOND L~ 510
CRYPTOGRAPHIC TECHNIQUE

¥

CONFIGURE CRYPTOGRAPHY MODULE WITH FIRST R . 545

TECHNIQUE IN RESPONSE TO REQUEST TOREAD
FROM FIRGT REGION

X

¥
DECRYPT FIRST 800T INFO WITH FIRST TECHNIGUE

¥

CONFIGURE CRYPTOGRAPHY MODULE WITH SECOND §__ 505

TEGHNIGUE 1N RESPONSE TO REQUEST TO READ
FROM SECOND REGION

hd

— 530
DECRYPT FIRST BOOT INFO WITH FIRST TECHNIQUE
) i 53 DIGITAL
ERROR-DETECTION . 4 SIGNATURE
:"\\TE{::HM@JE?
HASHING
v e . s v - 850
ETERMIN DETERMINE |5 DETERWINE
e WHETHER WHETHER
WHETHER g £
BRIV CONSISTENT CONSISTENT
CONSISTENT WITH N ONSISTEN
ERROR-DETECTION T AASH: WiTH DIGHAL
TECHNIQUE SIGNATURE

¥ ¥ ¥

EXECUTE SECURE BOOT INSTRUCTIONS IF CONSISTENT

FIG. 5

i
n
Ly |
(8]

US 9,418,027 B2

1
SECURE BOOT INFORMATION WITH
VALIDATION CONTROL DATA SPECIFYING
A VALIDATION TECHNIQUE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. provisional patent
application No. 61/509,078, filed on Jul. 18, 2011, which is
hereby incorporated by reference herein in its entirety.

BACKGROUND

A computing device, such as a device including a proces-
sor, may interact with secret or otherwise sensitive informa-
tion during operation. As such, some computing devices may
operate to protect the sensitive information. For example, a
computing device may encrypt sensitive information using a
security parameter, such as an encryption key, stored on the
device. The computing device may also operate to protect the
security parameter stored on the device.

BRIEF DESCRIPTION OF THE DRAWINGS

The following detailed description references the draw-
ings, wherein:

FIG. 1 is a block diagram of an example integrated circuit
(IC) to validate secure boot information with a validation
technique specified in the secure boot information;

FIG. 2 is a block diagram of an example computing device
comprising an IC to determine a validation technique speci-
fied in secure boot information;

FIG. 3 is a block diagram of an example IC to decrypt and
validate secure boot information stored in external storage;

FIG. 4 is a flowchart of an example method for generating
test validation data with a validation technique specified in
validation control data; and

FIG. 5 is a flowchart of an example method for decrypting
secure boot information with at least one cryptographic tech-
nique and a specified validation technique.

DETAILED DESCRIPTION

Asnoted above, a computing device may operate to protect
sensitive information using security parameters stored on the
computing device. To protect both the sensitive information
and the security parameters, an integrated circuit (IC) of a
computing device may have multiple operating states that
may each be utilized in different stages of the life cycle of the
computing device. For example, when a computing device is
being developed, tested, and/or initialized in a controlled
environment, the IC may be operated in a clear state in which
the IC provides little or no security for information stored on
orutilized by the IC. For example, boot instructions executed
by the IC in this clear state may be stored outside the proces-
sor in a cleartext (e.g., unencrypted, uncompressed, etc.) for-
mat.

When the computing device is operated in an environment
in which it is vulnerable to security threats, the IC may be
operated in a secure state in which the device may provide
more security for information stored on or utilized by the IC
than in the clear state. For example, secure boot information
used to boot the computing device in the secure state may be
stored outside of the IC in an encoded (e.g., encrypted) format
to prevent an unauthorized party from determining the con-
tent of the information and tampering with the information to
gain access to security parameters stored on the IC. Addition-

10

15

20

25

30

35

40

45

50

55

60

65

2

ally, in response to a breach of the computing device’s secu-
rity, the IC may zeroize its security parameters and operate
thereafter in a zeroize state in which the IC provides event
reporting and diagnostic functionalities until the device is
returned to the controlled environment.

To provide additional security for the secure state, an IC
may perform an integrity check with a predefined validation
technique to validate the integrity of the secure boot informa-
tion stored outside of the IC prior to using the information
(e.g., executing instructions). Different validation techniques
provide different tradeoffs in complexity, speed, and security,
so one validation technique may not be suitable or desirable
for every context. For example, a fast, relatively simple valid-
ity check may be suitable for a computing device for which
there is a relatively low risk of security threats. However, a
more complex, more secure, slower validation technique may
be desired for a computing device that, for example, is more
vulnerable to security threats, that uses more sensitive infor-
mation, etc. Additionally, a computing device may not meet
certain security standards (e.g., government-imposed secu-
rity standards) unless a particular validation technique is
used.

To address these issues, in examples disclosed herein, an
IC may verify the validity of secure boot information stored
external to the IC by retrieving the secure boot information,
determining a validation technique specified in the secure
boot information, and verifying the integrity of the secure
boot information with the specified validation technique. In
such examples, the IC may be capable of using any one of a
plurality of different validation techniques to validate the
secure boot information. In this manner, examples disclosed
herein may provide a single IC that may be used in a variety
of'contexts regardless of a desired validation technique. Addi-
tionally, by allowing a desired validation technique to be
specified in the information to be validated, examples dis-
closed herein may provide much flexibility for the manner of
validating information integrity. For example, as security
threats or standards change, examples disclosed herein may
allow the validation technique used by an IC to be readily
changed by changing the validation technique specified in the
information to be validated.

Referring now to the drawings. FIG. 1 is a block diagram of
an example integrated circuit (IC) 100 to validate secure boot
information with a validation technique specified in the
secure boot information. In the example of FIG. 1, IC 100
includes a processor 110, a cryptography module 115, a
machine-readable storage medium 120 including (e.g.,
encoded with) instructions 122, 124, 126, and 128. In some
examples, storage medium 120 may include additional
instructions. In other examples, instructions 122, 124, 126,
128, and any other instructions described herein in relation to
storage medium 120 may be stored remotely from IC 100. In
some examples, IC 100 may be included in a computing
device. As used herein, a “computing device” may be a desk-
top or notebook computer, a tablet computer, a computer
networking device (e.g., a hardware security module), a
server, or any other device or equipment (e.g., an automated
teller machine (ATM), etc.) including a processor.

As used herein, a “processor” may be electronic circuitry
including at least one of a central processing unit (CPU), a
graphics processing unit (GPU), a field-programmable gate
array (FPGA) configured to retrieve and execute instructions
stored on a machine-readable storage medium, other elec-
tronic circuitry suitable for the retrieval and execution of such
instructions, or a combination thereof. Processor 110 may
fetch, decode, and execute instructions stored on storage
medium 120 to implement the functionalities described

US 9,418,027 B2

3

below. In other examples, the functionalities of any of the
instructions of storage medium 120 may be implemented in
the form of electronic circuitry, in the form of executable
instructions encoded on a machine-readable storage medium,
or a combination thereof.

Additionally, as used herein, a “machine-readable storage
medium” may be any electronic, magnetic, optical, or other
physical storage device to contain or store information such
as executable instructions, data, and the like. For example,
any machine-readable storage medium described herein may
be any of Random Access Memory (RAM), flash memory, a
storage drive (e.g., a hard disk), a Compact Disc Read Only
Memory (CD-ROM), and the like, or a combination thereof.
Further, any machine-readable storage medium described
herein may be non-transitory.

In some examples, instructions 122 may retrieve, with
processor 110, secure boot information 156 from external
storage 155. In examples described herein, external storage
155 may be a machine-readable storage medium. In some
examples, external storage 155 may be external to IC 100. In
the example of FIG. 1, instructions 122 may cause processor
110 to retrieve secure boot information 156 via cryptography
module 115 to decrypt secure boot information 156, which
may be stored in an encrypted format in external storage 155.
In some examples, instructions 122 may retrieve secure boot
information 156 beginning at a secure reset vector. As used
herein, a “reset vector” may be an address from which a
processor may first retrieve information after undergoing a
reset. In some examples, IC 100 may include multiple reset
vectors. For example, a “secure reset vector” may be a reset
vector used after a reset in a secure state, a “clear reset vector”
may be a reset vector used after a reset in clear state, and a
“zeroize reset vector” may be a reset vector used after a reset
in zeroize state.

As used herein, a “cryptography module” is a module
implementing at least one information formatting technique
and that may reformat input information with any one of the
formatting techniques. Example information formatting tech-
niques that may be implemented by a cryptography module
include, for example, encryption and/or decryption tech-
niques, compression and/or decompression techniques, and
any other information encoding and/or decoding techniques.
In some examples, a cryptography module may implement a
plurality of different formatting techniques and reformat
input information with a selected one of the formatting tech-
niques. Any cryptography module described herein may be
implemented in the form of electronic circuitry, in the form of
executable instructions encoded on a machine-readable stor-
age medium, or a combination thereof.

Additionally, as used herein, “boot information” is infor-
mation that may be used by a processor of a computing device
to boot the computing device. In some examples, the boot
information may include at least one of boot data (e.g.,
addresses and/or other information, etc.) and boot instruc-
tions. As used herein. “boot instructions” are a set of instruc-
tions that may be executed by a processor of a computing
device to boot the computing device. Boot instructions may
include, for example, instructions to test and/or configure
components and/or functionalities of the computing device.
In such examples, computing device components that may be
tested and/or configured may include a processor, memory, a
memory management unit, cryptographic functionalities, and
the like, or a combination thereof. Also, as used herein,
“secure boot information” may be boot information used to
boot a computing device in a secure mode of operation. In
some examples, secure boot information may include secure

20

25

30

35

40

45

50

4

boot instructions, which may be boot instructions used to boot
a computing device in a secure mode of operation.

In some examples, instructions 122, when executed, may
cause processor 110 to provide at least one read request to
external storage 155 (e.g., via an external bus controller) to
retrieve secure boot information 156. In response to the at
least one read request, external storage 155 may provide
encrypted secure boot information 156 to cryptography mod-
ule 115 (e.g. via the external bus controller). In such
examples, cryptography module 115 may decrypt the
encrypted secure boot information 156 to generate decrypted
secure boot information 160, which may be in a cleartext
format. In some examples, in response to the read request, a
memory management unit may configure cryptography mod-
ule 115 with cryptographic information corresponding to the
memory region targeted in the read request, such as a cryp-
tographic technique, a cryptographic key, or the like. In such
examples, cryptography module 115 may use this crypto-
graphic information to decrypt information read from storage
155. In some examples, cryptography module 115 may pro-
vide decrypted secure boot information 160 to an internal
storage at which processor 110 may access secure boot infor-
mation 160. In other examples, cryptography module 115
may provide decrypted secure boot information 160 to pro-
cessor 110 without first providing the secure boot information
160 to internal storage. In such examples, processor 110 may
store the received decrypted secure boot information 160 in
internal storage (e.g., cache).

As used herein, information in a “cleartext” format for a
given computing device is information that a processor of the
computing device is able to execute or otherwise operate on
without first reformatting (e.g., decrypting, decoding, etc.)
the information. For example, instructions in a cleartext for-
mat may be instructions that the processor may execute with-
out first reformatting the instructions. Information in a cleart-
ext format may also be referred to herein as “decrypted”
information. As used herein, information in an “encrypted”
format for a given computing device is information in a for-
mat that a processor of the computing device may execute or
otherwise operate on after the information is decrypted.

Inthe example of FIG. 1, secure boot information 160 may
include validation control data 162, secure boot instructions
170, and validation data 168 for secure boot information 160.
As used herein, “validation data” for a collection of informa-
tion is data derived from the collection of information at a
given point in time that may be used subsequently to deter-
mine whether the information (or a particular portion thereof)
has changed since the generation of the validation data. In
some examples, validation data for a collection of informa-
tion may be, for example, a digest, a code, a hash, a digital
signature, or the like, derived from at least a portion of the
information. In some examples, validation control data 162
may be located at or near the beginning of secure boot infor-
mation 160. In other examples, validation control data 162
may be located at any other location within secure boot infor-
mation 160. Additionally, in the example of FIG. 1, validation
data 168 is separate from validation control data 162. In some
examples, validation data 168 may be located at or near the
end of secure boot information 160. In other examples, vali-
dation data 168 may be located elsewhere in secure boot
information 160. In other examples, validation control data
162 may include validation data 168. In some examples,
encrypted secure boot information 156 may comprise secure
boot information 160 in an encrypted format.

Storage medium 120 further comprises instructions 124 to
determine, with any one of a plurality of different validation
techniques, whether validation data 168 is consistent with the

US 9,418,027 B2

5

decrypted secure boot information 160. In such examples,
instructions 124 may determine whether validation data 168
is consistent with secure boot information 160 using which-
ever of the plurality of validation techniques is specified in
secure boot information 160. As used herein, a “validation
technique” is a process for determining whether given vali-
dation data is consistent with a given collection of informa-
tion. Additionally, as used herein, validation data “is consis-
tent with” a collection of information for a given validation
technique if test data derived from at least a portion of the
information as part of the validation technique is equivalent to
the validation data or data derived from the validation data as
part of the validation technique.

In the example of FIG. 1, instructions 124 may utilize any
one of a plurality of different validation techniques to deter-
mine whether validation data 168 is consistent with the
decrypted secure boot information 160. In some examples,
instructions 124 may include instructions to perform each of
the plurality of different validation techniques. In other
examples, instructions 124 may include instructions to utilize
a cryptography module to perform each of the different vali-
dation techniques.

Asusedherein, validation techniques are “different” if they
use different processes for determining whether validation
data for a collection of information is consistent with the
information. In some examples, validation techniques using
different functions for deriving the test data from given infor-
mation may be considered different validation techniques
herein. For example, two hash validation techniques using
different hash functions, respectively, to derive test data from
a given set of information may be considered different vali-
dation techniques herein. Another example of different vali-
dation techniques may be an error-detection validation tech-
nique and a hash validating technique using different
functions for deriving test data from a given collection of
information. In other examples, validation techniques using
different processes after deriving the test data may be consid-
ered different validation techniques herein. For example, a
hash validation technique may determine that given valida-
tion data is consistent with given information if the validation
data is equivalent to test data derived from the information
using a hash function. However, a different digital signature
validation technique may determine that the validation data is
consistent with the given information if test data derived from
the information is equivalent to other data derived by decrypt-
ing the validation data with a public key.

In the example of FIG. 1, instructions 126 may determine
which of the plurality of different validation techniques is
specified in validation control data 162 of secure boot infor-
mation 160. For example, validation control data 162 may
include a validation technique identifier 164. In such
examples, instructions 126 may determine the specified vali-
dation technique of the plurality of validation techniques
based on validation technique identifier 164.

In the example of FIG. 1, instructions 124 may determine
whether validation data 168 is consistent with decrypted
secure boot information 160 with the validation technique
specified by identifier 164. In some examples, instructions
124 may determine, with the specified validation technique,
whether validation data 168 is consistent with decrypted
secure boot information 160 after all of secure boot informa-
tion 156 is retrieved from external storage 155. In such
examples, instructions 124 may cause test data to be derived
from at least a portion of secure boot information 160 stored
in internal memory of IC 100. In other examples, instructions
124 may determine, with the specified validation technique,
whether validation data 168 is consistent with decrypted

40

45

50

6

secure boot information 160 at least partially in parallel with
retrieving secure boot information 156. For example, after
retrieving and decrypting the portion of secure boot informa-
tion 160 including validation control data 162, instructions
126 may determine the specified validation technique. In such
examples, instructions 124 may begin deriving the test data
from portions of secure boot information 160 output by cryp-
tography module 115 before all of secure boot information
156 is retrieved from external storage 155. In such examples,
instructions 124 may continue deriving the test data as the
encrypted secure boot information 156 is retrieved and
decrypted. In some examples, instructions 124 may derive the
test data from information 160 output by cryptography mod-
ule 115 before, after, or at least partially in parallel with
information 160 being stored in internal storage of IC 100. In
other examples, instructions 124 may derive the test data from
information 160 output by cryptography module 115 before
or at least partially in parallel with information 160 being
encrypted again by cryptography module 115 and stored in
other storage external to IC 100 (e.g., an external DRAM).

In some examples, instructions 128 may boot a computing
device including IC 100 with secure boot instructions 170 if’it
is determined, with the validation technique specified by
identifier 164 of control data 162, that validation data 168 is
consistent with the decrypted secure boot information 160. As
noted above, secure boot information 160 output by cryptog-
raphy module 115 may be stored in internal storage (e.g.,
cache) of IC 100. In some examples, instructions 128 may
boot the computing device with secure boot instructions 170
by causing processor 110 to jump to secure boot instructions
170 stored in the internal memory, or by otherwise transfer-
ring control to secure boot instructions 170 stored in the
internal memory. In other examples, in response to determin-
ing that validation data 168 is consistent with secure boot
information 160, instructions 128 may trigger the execution
of'secure boot instructions 170 stored in external storage 155.
In such examples, instructions 128 may trigger the retrieval of
at least secure boot instructions 170 via cryptography module
115 and the execution of the received secure boot instructions
170 without validating the retrieved information again. In
other examples, instructions 128 may trigger the retrieval of
at least secure boot instructions 170 stored in the other exter-
nal storage (e.g., external DRAM) via cryptography module
115 and the execution of the received secure boot instructions
170 without validating the retrieved information again.

Examples described herein provide the ability to validate
secure boot information using any one of a plurality of dif-
ferent validations techniques. In examples described herein,
secure boot information retrieved from external storage may
be validated using a validation technique specified in valida-
tion control data of the secure boot information. In this man-
ner, examples disclosed herein may provide flexibility in the
validation of information retrieved from external storage by
implementing a plurality of different validation techniques
and allowing a validation technique for validating a given
collection of information to be specified in the information to
be validated. In some examples, functionalities described
herein in relation to FIG. 1 may be provided in combination
with functionalities described herein in relation to any of
FIGS. 2-5.

FIG. 2 is a block diagram of an example computing device
201 comprising an IC 200 to determine a validation technique
specified in secure boot information. In the example of FIG.
2, 1C 200 may include a processor 110, a cryptography mod-
ule 115, and a machine-readable storage medium 120, as
described above in relation to FIG. 1. Storage medium 120
may include instructions 232, 234, 236, and 225, in addition

US 9,418,027 B2

7

to instructions 122, 124, 126, and 128 described above in
relation to FIG. 1. IC 200 may also include internal storage
216, which may be a machine-readable storage medium. In
addition to IC 200, computing device 201 may also include
external storage 155, as described above in relation to FIG. 1.
In other examples, external storage 155 may be remote from
1C 200 and computing device 201.

In the example of FIG. 2, instructions 122, when executed,
may cause processor 110 to retrieve secure boot information
156 from external storage 155 via cryptography module 115
to decrypt secure boot instructions 156 to generate decrypted
secure boot information 160, as described above in relation to
FIG. 1. In the example of FIG. 2, cryptography module 160
may store decrypted secure boot information 160 in internal
storage 216. In such examples, processor 110 may access
decrypted secure boot information 160 stored in internal stor-
age 216.

In the example of FIG. 2, instructions 124 may determine
whether validation data 168 of secure boot information 160 is
consistent with secure boot information 160 with any one of
a plurality of different validation techniques, as described
above in relation to FIG. 1. In some examples, instructions
124 may derive test data from at least a portion of secure boot
information 160 in accordance with the specified validation
technique and determine whether the derived test data is
equivalent to validation data 168 or data derived from valida-
tion data 168 as part of the specified validation technique.

In the example of FIG. 2, validation control data 162 may
include a validation length 266. In such examples, instruc-
tions 124 may comprise instructions to derive the test data
from a portion of decrypted secure boot information 160
having a length equal to validation length 266. For example,
if instructions 124 derive the test data from information 160
using a hashing function, then instructions 124 may derive the
test data by performing the hashing function on a portion of
information 160 having a length equal to validation length
266, such as the first portion of information 160 having vali-
dation length 266. In other examples, the test data may be
derived from the entire length of information 160, excluding
validation data 168, for example.

In some examples, validation control data 162 may also
include at least one validation parameter 267 for the valida-
tion technique specified by validation technique identifier
164. Validation parameters 267 may include, for example, at
least one of an initialization value for a process for deriving
test data from secure boot information (e.g. a cyclic redun-
dancy check (CRC) technique), a public key used in a digital
signature validation technique, the length of the public key, an
indication of whether the public key is included in validation
control data 162, and any other parameters that may be used
by the validation technique specified by identifier 164. In
examples in which the public key is not included in validation
control data 162, the public key may be stored in IC 200.

In the example of FIG. 2, instructions 124 may include
instructions to perform each of the plurality of different vali-
dation techniques to determine whether validation data 168 of
secure boot information 160 is consistent with secure boot
information 160. In some examples, instructions 124 may
include instructions 232 to determine, with an error-detection
validation technique, whether validation data 168 is consis-
tent with decrypted secure boot information 160. In examples
described herein, an error-detection validation technique may
be avalidation technique in which the test data is derived from
a given collection of information by an error-detection pro-
cess, such as a checksum process, a cyclic redundancy check
(CRC) process, or any other suitable error-detection process.
In such examples, an error-detection validation technique

20

25

40

45

8

may determine that given validation data is consistent with
the given information if the test data derived with the error-
detection process is equivalent to the validation data. In some
examples, instructions 232 may include a plurality of difter-
ent error-detection validation techniques, each deriving the
test data with a different error-detection process.

Instructions 124 may also include instructions 234 to deter-
mine, with a hashing validation technique, whether validation
data 168 is consistent with decrypted secure boot information
160. In examples described herein, a hashing validation tech-
nique may be a validation technique in which the test data is
derived from a given collection of information by performing
a hash function on (i.e., hashing) at least a portion of the
information. In such examples, a hashing validation tech-
nique may determine that given validation data is consistent
with the given information if the test data derived by perform-
ing the hash function on the given information is equivalent to
the validation data. In some examples, instructions 234 may
include a plurality of different hashing validation techniques,
each deriving the test data with a different hash function.
Example hash functions may include, for example, crypto-
graphic hash functions (e.g., SHA-256, SHA-512, etc.), non-
cryptographic hash functions (e.g., FNV hash, etc.), or any
other hash function.

Additionally, instructions 124 may include instructions
236 to determine, with a digital signature validation tech-
nique, whether validation data 168 is consistent with
decrypted secure boot information 160. In examples
described herein, a digital signature validation technique may
be a validation technique in which test data is derived from
given information by hashing at least a portion of the infor-
mation and decrypted data is derived from given validation
data by decrypting the validation data. In such examples, a
digital signature validation technique may determine that the
given validation data is consistent with the given information
if the test data is equivalent to the decrypted data derived from
the validation data. In some examples, instructions 236 may
include a plurality of different digital signature validation
techniques, each differing in at least one of a hash function for
deriving test data, a decryption process, etc. Example digital
signature validation techniques may include techniques
based on, for example, an RSA/PKCS based technique, a
federal information processing standard (FIPS) digital signa-
ture algorithm (DSA), a elliptic curve digital signature algo-
rithm (ECDSA), an Elgamal signature technique, or any other
digital signature technique.

In the example of FIG. 2, instructions 126 may determine
which of the plurality of different validation techniques is
specified by validation technique identifier 164 of validation
control data 162 of secure boot information 160, as described
above in relation to FIG. 1. In some examples, validation
control data 162 may be located at any location within secure
boot information 160. In such examples, secure boot infor-
mation 160 may include a control data flag 261 in addition to
validation control data 162, secure boot instructions 170, and
validation data 168, as described above in relation to FIG. 1.
Control data flag 261 may be any information indicating the
location of validation control data 162 in decrypted secure
boot information 160. For example, control data flag 261 may
be a particular bit-mask, data pattern, or other information
reserved for flag 261 and known by instructions 225. In such
examples, instructions 225 may identify control data flag 261
in decrypted secure boot information 160 output from module
115.

In some examples, instructions 225 may use the location of
flag 261 to determine the location of validation control data
162. For example, secure boot information 160 may be orga-

US 9,418,027 B2

9

nized such that validation control data 162 directly follows
flag 261 in secure boot information 160 or is located at
another predefined location relative to flag 261 within infor-
mation 160. In such examples, after instructions 225 identify
the location of validation control techniques, instructions 126
may determine which of the plurality of different validation
techniques is specified by validation technique identifier 164
of validation control data 162, as described above in relation
to FIG. 1.

In other examples, secure boot information 160 may be
organized such that validation control data 162 has a constant
location in secure boot information 160. In such examples,
flag 261 and instructions 225 may be omitted, and instruc-
tions 126 may look to the constant location within secure boot
information 160 to find validation control data 162. For
example, validation control data 162 may be located at a
predefined offset within secure boot information 160. In such
examples, instructions 126 may determine the specified vali-
dation technique from the validation technique identifier 164
of the validation control data 162 at the constant location
within secure boot information 160. For example, validation
control data 162 may start at a first location of secure boot
information 160, or any other location in secure boot infor-
mation 160.

In the example of FIG. 2, after instructions 126 determine
the validation technique specified in validation control data
162, instructions 124 may determine whether validation data
168 is consistent with secure boot information 160 using
whichever of the plurality of the validation techniques is
specified by validation technique identifier 164 of validation
control data 162. In some examples, instructions 124 may
determine, with the specified validation technique, whether
validation data 168 is consistent with decrypted secure boot
information 160 at least partially in parallel with retrieving
secure boot information 156, as described above in relation to
FIG. 1. If instructions 124 determine that validation data 168
is not consistent with secure boot information 160, then
instructions 124 may output an alarm and not boot computing
device 201. The alarm may be output by instructions 124 on
at least one status indicator (e.g., lights) of computing device
201 connected to IC 200.

In some examples, instructions 128 may boot computing
device 201 with secure boot instructions 170 if it is deter-
mined, with the validation technique specified by identifier
164, that validation data 168 is consistent with decrypted
secure boot information 160, as described above in relation to
FIG. 1. In some examples, instructions 128 may trigger
execution of secure boot instructions 170 by processor 110 if
validation data 168 is determined to be consistent with infor-
mation 160. In the example of FIG. 2, secure boot information
160 may be stored in internal storage 216. In such examples,
instructions 128 may boot computing device 201 with
instructions 170 by triggering execution, by processor 110, of
secure boot instructions 170 stored on internal storage 216 if
validation data 168 is consistent with decrypted secure boot
information 160. In such examples, instructions 128 may
cause processor 110 to jump to instructions 170 on internal
storage 216, or otherwise transfer control to instructions 170.
In other examples, instructions 128 may cause processor 110
to retrieve and execute instructions 170 from external storage
155 if validation data 168 is consistent with decrypted secure
boot information 160. In other examples, secure boot infor-
mation stored in internal storage 216 may be encrypted again
by cryptography module 115 and stored in other storage
external to IC 100, such as an external DRAM, if validation
data 168 is consistent with decrypted secure boot information
160. In such examples, instructions 128 may cause processor

25

40

45

10

110 to retrieve and execute instructions 170 from the other
external storage (e.g., external DRAM). In some examples,
functionalities described herein in relation to FIGS. 1-2 may
be provided in combination with functionalities described
herein in relation to any of FIGS. 3-5.

FIG. 3 is a block diagram of an example computing system
395 including an IC 300 to decrypt and validate secure boot
information stored in external storage 155. In the example of
FIG. 3, computing system 395 includes IC 300 and external
storage 155. IC 300 includes a processor 310 and internal
storage 320 including (e.g., encoded with) a set of executable
internal instructions 321, including instructions 322, 324,
326, 328, and 332. Internal storage 320 may be a machine-
readable storage medium. Processor 310 may fetch, decode,
and execute instructions stored on internal storage 320 to
implement the functionalities described below. In other
examples, the functionalities of any of the instructions of
internal storage 320 may be implemented in the form of
electronic circuitry, in the form of executable instructions
encoded on a machine-readable storage medium, or a com-
bination thereof.

IC 300 may also include a cryptography module 115, as
described above in relation to FIG. 1, a cryptography module
314, a memory management unit 318, and secure storage 370.
In some examples, memory management unit 318 may be
implemented in the form of electronic circuitry, in the form of
executable instructions encoded on a machine-readable stor-
age medium, or a combination thereof. Secure storage 370
may be a machine-readable storage medium. Additionally, in
some examples, secure storage 370 may be a machine-read-
able storage medium.

In the example of FIG. 3, processor 310 may execute inter-
nal instructions 321 in response to a reset request 381 if, at
least, a secure state value is stored in operating state storage
314 of IC 300. In some examples, processor 310 may execute
internal instructions 321 in response to a reset request 381 if
a secure state value is stored in operating state storage 314 of
1C 300. In other examples, processor 310 may execute inter-
nal instructions 321 in response to a reset request 381 if a
secure state value is stored in operating state storage 314 and
anon-validated value is stored in validation result storage 316
of IC 300.

In some examples, internal instructions 321 may be
instructions to validate secure boot instructions prior to
executing the secure boot instructions in a secure mode of
operation. For example, it may be desirable to validate the
integrity of secure boot information 160 prior to executing
instructions 170 to provide additional protection for sensitive
information and security parameters utilized by a computing
device including IC 300. Such validation, which may delay
booting, may not be desirable in a clear state primarily used in
a secure environment or in a zeroize state in which security
parameters have been zeroized and are likely not vulnerable.
Accordingly, in some examples, internal instructions 321
may be executed in a secure state, and not in a clear or zeroize
state.

In the example of FIG. 3, a reset handler 312 of processor
310 may receive reset request 381 and, in response to reset
request 381, determine whether to execute internal instruc-
tions 321. In such examples, in response to reset request 381,
reset handler 312 may determine whether a secure state value
(e.g., a value indicating a secure state) is stored in operating
state storage 314. In some examples, operating state storage
314 may store a value indicating the state (e.g., secure, clear,
zeroize, etc.) in which IC 300 is to operate after reset. For
example, if a clear state value or a zeroize state value is stored

US 9,418,027 B2

11

in state storage 314, then reset handler 312 may determine not
to execute internal instructions 321 in response to reset
request 381.

In some examples, reset handler 312 may determine to
execute internal instructions 321 in response to reset request
381 if a secure state value is stored in operating state storage
314. In other examples, reset handler 312 may determine to
execute internal instructions 321 in response to reset request
381 if a secure state value is stored in operating state storage
314 and a non-validated value is stored in validation result
storage 316 for information 160, indicating that information
160 has not been validated. In such examples, reset handler
312 may determine not to execute internal instructions 321 if
a valid result value is stored in result storage 316 for infor-
mation 160, indicating that information 160 has already been
validated, regardless of whether a secure state value is stored
in storage 314. In some examples, if a clear state value is
stored in storage 314, reset handler 312 may determine not to
execute internal instructions 321, and may instead begin to
retrieve information from a clear state reset vector. In such
examples, if a zeroize state value is stored in storage 314, reset
handler 312 may determine not to execute internal instruc-
tions 321, and may instead begin to retrieve information from
a zeroize state reset vector.

In some examples, reset request 381 may be generated by
instructions executed by processor 310 (e.g. a software gen-
erated reset). In other examples, reset request 381 may be
received from outside of processor 310. Additionally, in some
examples, at least one of operating state storage 314 and
validation result storage 316 may be included in internal
storage 320. In other examples, operating state storage 314
and validation result storage 316 may be separate from inter-
nal storage 320. In such examples, each of storage 314 and
storage 316 may each be part of a machine-readable storage
medium. Additionally, in some examples, the functionalities
of reset handler 312 may be implemented in the form of
electronic circuitry, in the form of executable instructions
encoded on a machine-readable storage medium, or a com-
bination thereof.

In some examples, if reset handler 312 determines to
execute internal instructions 321, reset handler 312 may
cause processor 310 to jump to internal instructions 321,
transfer control to instructions 321, or otherwise trigger the
execution of instructions 321. In the example of FIG. 3,
internal instructions 321 include instructions 322, 324, 326,
328, and 332. Instructions 322 may associate a secure region
157 of external storage 155 with a first cryptographic tech-
nique in the memory management unit 318.

In some examples, memory management unit 318 may
include information mapping regions of external storage 155
to cryptographic information to be used when retrieving
information from those regions, respectively. In the example
of FIG. 3, instructions 322 may associate secure region 157
with a first cryptographic technique by mapping secure
region information 317 with first cryptographic data 319 in
memory management unit 318. In such examples, secure
region information 317 may be information corresponding to
(e.g., identifying the addresses encompassed by) secure
region 157 that may be used, for example, to identify access
requests (e.g., read and write requests) for secure region 157.
In some examples, first cryptographic data 319 may identify
at least one of a first cryptographic technique and a crypto-
graphic technique parameter. In other examples, first crypto-
graphic data 319 may include a location of first cryptographic
information stored outside of memory management unit 318.
In such examples, instructions 322 may map secure region

10

15

20

25

30

35

40

45

50

55

60

65

12

information 317 with an address at which first cryptographic
information 372A is stored in secure storage 370.

Instructions 324 may request to read secure boot informa-
tion 156 from secure region 157 of external storage 155. For
example, instructions 324 may request to read secure boot
information 156 from a secure reset vector, which may be an
address in secure region 157. In some examples, in response
to the request to read from secure region 157, cryptography
module 155 may decrypt secure boot information 156 with
the first cryptographic technique associated with secure
region 157 in memory management unit 318 to generate
decrypted secure boot information 160. Decrypted secure
boot information 160 may be stored in internal storage by
module 115, as described above in relation to FIGS. 1 and 2.
In some examples, in response to a request to access external
storage 155, memory management unit 318 may configure
cryptography module 115 to use a cryptographic technique
associated with the region to be accessed so that information
read from or written to that region may be formatted using the
appropriate cryptographic technique.

For example, processor 310 may provide the read request
of instructions 324 to memory management unit 318, which
may determine, based on secure region information 317, that
the read request is a request to access secure region 157. In
response, memory management unit 318 may configure cryp-
tography module 115 with the first cryptographic technique
based on first cryptographic data 319 associated with secure
region information 317. For example, first cryptographic data
319 may be an address of first cryptographic information
372A in secure storage 370. In such examples, memory man-
agement unit 318 may retrieve first cryptographic informa-
tion 372A from secure storage 370 in response to the read
request. Memory management unit 318 may receive informa-
tion 372 A via a communication 383, and provide information
372A to cryptographic module 115, via a communication
384, to configure cryptography module 115 to utilize infor-
mation 372A when reading from secure region 157. In other
examples, first cryptographic data 319 may include first cryp-
tographic information 372A, which memory management
unit 318 may provide to cryptography module 115 in
response to the read request.

In the example of FIG. 3, secure storage 370 may store at
least one set of cryptographic information. For example,
secure storage 370 may store first and second cryptographic
information 372A and 372B. In such examples, first crypto-
graphic information 372A may include at least one of a first
cryptographic technique identifier 374 A and at least one first
technique parameter 376A. In some examples, second cryp-
tographic parameters 3728 may include at least one of a
second cryptographic technique identifier 374B and at least
one second technique parameter 3768.

In examples described herein, a cryptographic technique
may be, for example, any information formatting technique,
such as an encryption and/or decryption technique, a com-
pression and/or decompression technique, or any other infor-
mation encoding and/or decoding technique. In examples
described herein, a technique parameter may be any param-
eter used by any cryptographic technique, such as, for
example, an encryption key, a cryptographic mode identifier,
an operation type identifier, an initialization value, or the like.
In examples described herein, a cryptographic mode identi-
fier may identify a mode in which a cryptographic technique
is to operate (e.g., electronic codebook (ECB), cipher-block
chaining (CBC), XTS-AES, etc.). Additionally, in examples
described herein, an operation type identifier may identify an
operation type (e.g., encryption, decryption, etc.) to be used
with a cryptographic technique.

US 9,418,027 B2

13

In some examples, other regions of external storage 155
may be associated with other cryptographic data in memory
management unit 318. For example, alternate region 159 may
be associated with second cryptographic data including sec-
ond cryptographic information 372B or pointing to second
cryptographic information 372B in secure storage 370. In
such examples, in response to a request to access alternate
region 159, memory management unit may provide second
cryptographic information 372B to cryptography module 115
to configure module 115 to format information read from or
written to region 159 in accordance with second crypto-
graphic information 372B. In some examples, alternate
region 159 may be a region storing boot information for the
zeroize operating state or boot information for the clear oper-
ating state. In such examples, second cryptographic informa-
tion 372B may include information for a different crypto-
graphic technique than first cryptographic information 372A.
Additionally, in some examples, cryptographic information,
such as second cryptographic information 3728, may indicate
that information is to be passed through cryptography module
115 without being reformatted. In such examples, second
cryptographic information 3728 may configure module 115
with a null cryptographic technique in which no reformatting
is performed so that information stored in cleartext (e.g., clear
state boot information) may be property read through module
115 without reformatting (e.g., decrypting) the information.

In other examples, alternate region 159 may be another
secure region of storage 155. In such examples, a first portion
of'secure boot information 156 may be stored in secure region
157 and a second portion of secure boot information 156 may
be stored in alternate region 159. In such examples, the first
and second portions of secure boot information 156 may be
encrypted differently. In some examples, to appropriately
decrypt each portion, regions 157 and 159 may be associated
with different cryptographic information in memory manage-
ment unit 318.

In such examples, memory management unit 318 may
configure ayptographic module 115 with the appropriate
cryptographic information when processor 310 accesses each
region. For example, in response to any request to read from
secure region 157, memory management unit 318 may con-
figure cryptography module 115 with first cryptographic
information 372A, as described above. Additionally, in
response to any request to any request to read from alternate
region 159, memory management unit 318 may configure
cryptography module 115 with second cryptographic infor-
mation 372B. In examples in which first and second portions
of secure boot information 156 are encrypted differently,
instructions 322 may additionally associate alternate region
159 with a second cryptographic technique in memory man-
agement unit 318 by, for example, associating region 159
with second cryptographic information 3728 in memory
management unit 318. Additionally, in some examples, cryp-
tography module 115 may decrypt the first and second por-
tions of secure boot information 156 to generate decrypted
secure boot information 160.

In the example of FIG. 3, instructions 326 may determine
which of a plurality of different validation techniques is
specified in validation control data of secure boot informa-
tion. For example, instructions 326 may determine which ofa
plurality of different validation techniques is specified in
validation control data of secure boot information retrieved
from secure region 157 and decrypted by cryptography mod-
ule 115. In such examples, secure boot information may
include validation control data, as described above in relation
to FIGS. 1 and 2. In some examples, instructions 326 may
determine the specified validation technique from a valida-

10

15

20

25

30

35

40

45

50

55

60

65

14

tion technique identifier included in the validation control
data. For example, instructions 326 may determine the speci-
fied validation technique by accessing the validation control
data of decrypted secure boot information 160 after at least a
portion of secure boot information 156 has been decrypted to
generate at least a portion of secure boot information 160. In
some examples, the validation control data may include at
least one of an identifier associated with one of the validation
techniques, a validation technique parameter, and a validation
length, as described above in relation to FIG. 2.

In some examples, instructions 328 may determine, with
the specified validation technique, whether validation data of
the decrypted secure boot information 160 is consistent with
the decrypted secure boot information 160, as described
above in relation to FIGS. 1 and 2. In some examples, the
specified validation technique may include deriving test data
from at least a portion of decrypted secure boot information
160, as described above in relation to FIGS. 1 and 2. In some
examples, instructions 328 may derive the test data from the
portion of decrypted secure boot information 160 in accor-
dance with the specified validation technique at least in part
with another cryptography module 314. In such examples,
instructions 328 may instruct cryptography module 314 to
derive the test data from the portion of decrypted secure boot
information 160 in accordance with the specified validation
technique (e.g., by hashing the information with a particular
hash function, etc.). In some examples, the test data may be
derived at least partially in parallel with retrieving encrypted
secure boot information 156 from external storage, as
described above in relation to FIGS. 1 and 2.

In the example of FIG. 3, instructions 332 may cause
processor 310 to execute secure boot instructions of
decrypted secure boot information 160 (e.g., instructions 170
of FIG. 2) in response to determining that the validation data
is consistent with decrypted secure boot information 160. In
some examples, instructions 332 may cause processor 310 to
execute secure boot instructions of secure boot information
160 stored in internal storage of IC 300, as described above in
relation to FIG. 2.

In other examples, instructions 332 may cause processor
310 to execute secure boot instructions of encrypted secure
boot information 156 stored on external storage 155. For
example, in response to determining that the validation data is
consistent with decrypted secure boot information 160,
instructions 332 may store a valid result value in validation
result storage 316 and then generate a reset request 381. In
such examples, in response to the reset request 381, reset
handler 312 may determine that a secure state value is stored
in storage 314 and a valid result value is stored in storage 316
and thus determine not to execute internal instructions 321,
since secure boot information 156 has already been validated.
In such examples, reset hander 312 may cause processor 310
to jump to secure boot instructions of secure boot information
156 stored on external storage 155 to boot a computing device
including IC 300. In such examples, the secure boot instruc-
tions may be retrieved from external storage 155, decrypted
by cryptography module 115 as configured by memory man-
agement unit 318 according to the memory region being
accesses as described above, and executed by processor 310
after being decrypted.

FIG. 4 is a flowchart of an example method 400 for gener-
ating test validation data with a validation technique specified
in validation control data. Although execution of method 400
is described below with reference to computing system 395 of
FIG. 3, other suitable components for execution of method
400 can be utilized (e.g., IC 100 and computing device 201).
Additionally, method 400 may be implemented in the form of

US 9,418,027 B2

15

executable instructions encoded on a machine-readable stor-
age medium, in the form of electronic circuitry, or a combi-
nation thereof.

At 405 of method 400, processor 310 may map a first
secure region of external storage (e.g., secure region 157)to a
first cryptographic technique in memory management unit
318 of IC 300. In some examples, the processor 310 may map
or otherwise associate information identifying the first secure
region with an address of first cryptographic information
372A in secure storage 370. In such examples, first crypto-
graphic information 372A may include a technique identifier
374A identitying the first cryptographic technique. At 410,
memory management unit 318 may, in response to a request
from processor 310 to read from the first secure region storing
at least a first portion of secure boot information, configure
cryptography module 115 of IC 300 to decrypt information
with the first cryptographic technique. In some examples,
memory management unit 318 may configure module 115 by
providing first cryptographic information 372A to module
115, as described above in relation to FIG. 3. In some
examples, the first portion of the secure boot information may
be a first portion of encrypted secure boot information 156
stored in external storage 155. In such examples, a second
portion of secure boot information 156 may be stored in
another region of external storage 155 (e.g., alternate region
159) and may be encrypted differently than the first portion of
the secure boot information. In other examples, all of
encrypted secure boot information 156 may be encrypted in
the same manner (e.g., with the same technique and key) and
stored in the first secure region (e.g., secure region 157).

At 415, cryptography module 115 may decrypt at least the
first portion of the secure boot information with the first
cryptographic technique as the secure boot information is
read from external storage 155. In some examples, processor
310 may read the secure boot information from external stor-
age 155 via cryptography module 115, which may decrypt at
least the first portion of the secure boot information as it is
read from external storage 155. In such examples, memory
management unit 318 may configure cryptography module
115 to decrypt information read from the first secure region
with the first cryptographic technique (e.g., decryption tech-
nique) specified in first cryptographic information 372A and
any first parameters specified therein, as described above. In
examples in which all of the secure boot information is stored
in the first secure region, module 115 may decrypt all of the
secure boot information with the first cryptographic tech-
nique and the first parameters.

In some examples, the secure boot information may
include validation control data, as described above in relation
to FIGS. 1-3. At 420, processor 310 may determine what
validation technique is specified by the validation control data
of the secure boot information. In some examples, the vali-
dation control data may include a validation technique iden-
tifier, as described above in relation to FIGS. 2 and 3. In such
examples, processor 310 may determine, at 420, the valida-
tion technique indicated by the validation technique identifier
of the validation control data.

If the validation control data specifies the first validation
technique, then method 400 may proceed to 425. At 425,
processor 310 may determine, with the first validation tech-
nique, whether validation data of the secure boot information
is consistent with the secure boot information, as described
above in relation to FIGS. 1 and 2. If the validation control
data specifies the second validation technique, then method
400 may proceed to 430. At 430, processor 310 may deter-
mine, with the second validation technique, whether valida-
tion data of the secure boot information is consistent with the

10

15

20

25

30

35

40

45

50

55

60

65

16
secure boot information, as described above in relation to
FIGS. 1 and 2. In the example of FIG. 4, the first and second
validation techniques are different validation techniques.

At 435, processor 310 may execute secure boot instruc-
tions of the secure boot information if the validation data is
consistent with the secure boot information. For example, if
the specified validation technique is the first validation tech-
nique, processor 310 may execute the secure boot instructions
if the validation data was determined, with the first validation
technique, to be consistent with the secure boot information.
In other examples, if the specified validation technique is the
second validation technique, processor 310 may execute the
secure boot instructions if the validation data was determined,
with the second validation technique, to be consistent with the
secure boot information. In some examples, the secure boot
instructions may be executed as described above in relation to
FIGS. 1-3.

FIG. 5 is a flowchart of an example method 500 for
decrypting secure boot information with at least one crypto-
graphic technique and a specified validation technique.
Although execution of method 500 is described below with
reference to computing system 395 of FIG. 3, other suitable
components for execution of method 500 can be utilized (e.g.,
1C 100 and computing device 201). Additionally, method 500
may be implemented in the form of executable instructions
encoded on a machine-readable storage medium, in the form
of electronic circuitry, or a combination thereof.

At 505 of method 500, processor 310 may map a first
secure region of external storage (e.g., secure region 157)to a
first cryptographic technique in memory management unit
318 of IC 300. In some examples, processor 310 may map or
otherwise associate information identifying the first secure
region with an address of first cryptographic information
372A in secure storage 370. In such examples, first crypto-
graphic information 372A may include a technique identifier
374 A identitying the first cryptographic technique. At 510,
processor 310 may map a second secure region of external
storage (e.g., alternate region 159) to a second cryptographic
technique in memory management unit 318 of IC 300. In
some examples, processor 310 may map or otherwise asso-
ciate information identifying the second secure region with
an address of second cryptographic information 372B in
secure storage 370. In such examples, second cryptographic
information 372B may include a technique identifier 374B
identifying the second cryptographic technique.

At 515, memory management unit 318 may, in response to
a request from processor 310 to read from the first secure
region storing a first portion of secure boot information, con-
figure cryptography module 115 of IC 300 to decrypt infor-
mation with the first cryptographic technique. In some
examples, memory management unit 318 may configure
module 115 by providing first cryptographic information
372A to module 115, as described above in relation to FIG. 3,
in response to any request to read from the first secure region.
In some examples, the first portion of the secure boot infor-
mation may be a first portion of encrypted secure boot infor-
mation 156 stored in external storage 155. In such examples,
a second portion of secure boot information 156 may be
stored in the second secure region of external storage 155 and
may be encrypted differently than the first portion of the
secure boot information.

At 520, cryptography module 115 may decrypt at least the
first portion of the secure boot information with the first
cryptographic technique as the secure boot information is
read from external storage 155. In some examples, processor
310 may read the first portion of the secure boot information
from external storage 155 via cryptography module 115,

US 9,418,027 B2

17

which may decrypt the first portion of the secure boot infor-
mation with the first cryptographic technique as it is read from
external storage 155. In such examples, memory manage-
ment unit 318 may configure cryptography module 115 to
decrypt information read from the first secure region with the
first cryptographic technique (e.g. decryption technique) and
any parameters of first cryptographic information 372A, as
described above, in response to any request to read from the
first secure region.

At 525, memory management unit 318 may, in response to
a request from processor 310 to read from the second secure
region storing a second portion of secure boot information,
configure cryptography module 115 of IC 300 to decrypt
information with the second cryptographic technique. In
some examples, memory management unit 318 may config-
ure module 115 by providing second cryptographic informa-
tion 3728 to module 115, as described above in relation to
FIG. 3, in response to any request to read from the second
secure region. In some examples, the second portion of the
secure boot information may be a second portion of encrypted
secure boot information 156 stored in external storage 155
encrypted differently than the first portion of the secure boot
information.

At 530, cryptography module 115 may decrypt the second
portion of the secure boot information with the second cryp-
tographic technique as the second portion of the secure boot
information is read from external storage 155. In some
examples, processor 310 may read the second portion of the
secure boot information from external storage 155 via cryp-
tography module 115, which may decrypt the second portion
of'the secure boot information with the second cryptographic
technique as it is read from external storage 155. In such
examples, memory management unit 318 may configure
cryptography module 115 to decrypt information read from
the second secure region with the second cryptographic tech-
nique (e.g., decryption technique) and any parameters of first
cryptographic information 372B, as described above, in
response to any request to read from the second secure region.

In some examples, the secure boot information may
include validation control data, as described above in relation
to FIGS. 1-3. At 535, processor 310 may determine what
validation technique is specified by the validation control data
of the secure boot information. In some examples, the vali-
dation control data may include a validation technique iden-
tifier, as described above in relation to FIGS. 1 and 2. In such
examples, processor 310 may determine, at 535, the valida-
tion technique indicated by the validation technique identifier
of the validation control data.

If the validation control data specifies an error-detection
validation technique, then method 500 may proceed to 540.
At 540, processor 310 may determine, with the error-detec-
tion validation technique, whether validation data of the
secure boot information is consistent with the secure boot
information, as described above inrelationto FIGS. 1-3. Ifthe
validation control data specifies a hashing validation tech-
nique, then method 500 may proceed to 545. At 545, proces-
sor 310 may determine, with the hashing validation tech-
nique, whether validation data of the secure boot information
is consistent with the secure boot information, as described
above in relation to FIGS. 1-3. If the validation control data
specifies a digital signature validation technique, then method
500 may proceed to 550. At 550, processor 310 may deter-
mine, with the digital signature validation technique, whether
validation data of the secure boot information is consistent
with the secure boot information, as described above in rela-
tion to FIGS. 1-3.

10

15

20

25

30

35

40

45

50

55

60

65

18

At 555, processor 310 may execute secure boot instruc-
tions of the secure boot information if the validation data is
determined, with the specified validation technique, to be
consistent with the secure boot information. In some
examples, functionalities described herein in relation to
FIGS. 4-5 may be provided in combination with functional-
ities described herein in relation to any of FIGS. 1-3.

What is claimed is:

1. A non-transitory machine-readable storage medium
encoded with instructions executable by a processor of an
integrated circuit (IC) including a cryptography module, the
storage medium comprising:

instructions to retrieve, with the processor, secure boot

information including secure boot instructions and vali-
dation data for the secure boot information from storage
external to the IC, wherein the processor is to retrieve the
secure boot information via a cryptography module to
decrypt the secure boot information stored in an
encrypted format in the external storage;

instructions to determine, with any one of a plurality of

different validation techniques, whether the validation
data is consistent with the decrypted secure boot infor-
mation;
instructions to determine which of the plurality of different
validation techniques is specified in validation control
data of the decrypted secure boot information; and

instructions to boot a computing device including the IC
with the secure boot instructions if it is determined, with
the specified validation technique, that the validation
data is consistent with the decrypted secure boot infor-
mation.
2. The storage medium of claim 1, wherein:
the validation control data includes a validation length; and
the instructions to determine whether the validation data is
consistent the decrypted secure boot information com-
prise instructions to derive test data from a portion of the
decrypted secure boot information having a length equal
to the validation length.
3. The storage medium of claim 2, wherein the validation
control data comprises a validation technique identifier speci-
fying one of the plurality of validation techniques and at least
one configuration parameter for the specified validation tech-
nique.
4. The storage medium of claim 1, wherein the instructions
to determine whether the validation data is consistent with the
decrypted secure boot information comprise:
instructions to determine, with an error-detection valida-
tion technique, whether the validation data is consistent
with the decrypted secure boot information;

instructions to determine, with a hashing validation tech-
nique, whether the validation data matches the
decrypted secure boot information; and

instructions to determine, with a digital signature valida-

tion technique, whether the validation data matches the
decrypted secure boot information.

5. The storage medium of claim 1, wherein the instructions
to boot the computing device comprise:

instructions to trigger execution, by the processor, of the

secure boot instructions of the decrypted secure boot
information stored in internal storage of the IC if the
validation data is consistent with the decrypted secure
boot information.

6. The storage medium of claim 1, further comprising:

instructions to identify a control data flag, in the decrypted

secure boot information, indicating a location of the
validation control data in the decrypted secure boot
information.

US 9,418,027 B2

19

7. The storage medium of claim 1, wherein the instructions
to determine the specified validation technique comprise
instructions to determine the specified validation technique
from validation control data at a constant location within the
secure boot information.

8. An integrated circuit (IC) comprising:

a cryptography module;

a memory management unit;

an internal storage encoded with a set of executable inter-

nal instructions; and

aprocessor to execute the instructions in response to a reset

request if, at least, a secure state value is stored in an

operating state storage of the IC, wherein the internal

instructions, when executed, cause the processor to:

associate, in the memory management unit, a secure
region of external storage with a first cryptographic
technique;

request to read secure boot information from the secure
region of the external storage;

determine which of a plurality of different validation
techniques is specified in validation control data of
secure boot information retrieved from the secure
region and decrypted by the cryptography module;
and

determine, with the specified validation technique,
whether validation data of the decrypted secure boot
information is consistent with the decrypted secure
boot information;

wherein, in response to the request to read from the secure

region, the cryptography module is to decrypt the secure
boot information with the first cryptographic technique.

9. The IC of claim 8, wherein the internal instructions,
when executed, further cause the processor to:

execute secure boot instructions of the secure boot infor-

mation in response to determining that the validation
data is consistent with the decrypted secure boot infor-
mation.

10. The IC of claim 8, further comprising:

secure storage to store first cryptographic parameters

including at least one of a first cryptographic technique

identifier, a first cryptographic key, a first cryptographic

mode identifier, and a first operation type identifier;

wherein the memory management unit is to:

retrieve the first cryptographic information from an
address associated with the secure region in the
memory management unit in response to the request
to read from the secure region; and

provide the first cryptographic information to the cryp-
tography module.

11. The IC of claim 10, wherein:

the validation control data includes at least one of an iden-

tifier associated with one of the validation techniques, a
validation technique parameter, and a validation length;
and

the secure storage is to store second cryptographic infor-

mation associated with an alternative region of the exter-
nal storage.

5

10

15

20

25

30

35

40

45

50

55

20

12. The IC of claim 8, wherein the internal instructions to
determine whether the validation data is consistent with the
decrypted secure boot information, when executed, further
cause the processor to:

derive test data from the at least a portion of the decrypted

secure boot information at least in part with another
cryptography module.

13. A method comprising:

mapping, in a memory management unit of an integrated

circuit (IC), a first secure region of external storage to a
first cryptographic technique;

configuring, in response to a request from the processor to

read from the first secure region storing at least a first
portion of secure boot information, a cryptography mod-
ule of the IC to decrypt information with the first cryp-
tographic technique;

decrypting, with the cryptography module, at least the first

portion of the secure boot information with the first
cryptographic technique as the secure boot information
is read from the external storage;

determining, with a first validation technique, whether

validation data of the secure boot information is consis-
tent with the secure boot information, if validation con-
trol data of the secure boot information specifies the first
validation technique;

determining, with a second validation technique, whether

the validation data is consistent with the secure boot
information, if the validation control data specifies the
second validation technique; and

executing, with the processor, secure boot instructions of

the secure boot information if the validation data is
consistent with the secure boot information.

14. The method of claim 13, further comprising:

mapping, inthe memory management unit, a second secure

region of external storage to a second cryptographic
technique;

configuring the cryptography module to decrypt informa-

tion with the second cryptographic technique in
response to a request from the processor to read from the
second secure region storing a second portion of the
secure boot information; and

decrypting, with the cryptography module, the second por-

tion of the secure boot information with the second
cryptographic technique as the second portion is read
from the external storage.

15. The method of claim 14, further comprising:

determining, with a digital signature validation technique,

whether the validation data is consistent with the secure
boot information, if the validation control data specifies
the digital signature validation technique;

wherein the first validation technique is an error-detection

validation technique and the second validation tech-
nique is a hashing validation technique.

#* #* #* #* #*

